a+b+c+d=0
=>a+b=-c-d và a+d=-b-c
\(a^3+b^3+c^3+d^3\)
\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=-3bc\left(b+c\right)+3ad\left(b+c\right)\)
\(=3\left(b+c\right)\left(ad-bc\right)\)
a+b+c+d=0
=>a+b=-c-d và a+d=-b-c
\(a^3+b^3+c^3+d^3\)
\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=-3bc\left(b+c\right)+3ad\left(b+c\right)\)
\(=3\left(b+c\right)\left(ad-bc\right)\)
cho a,b,c>0
CMR: a^3/b + b^3/c + c^3/a >= ab + bc + ca
cho a+b+c+d=0. CMR:
a^3+b^3+c^3+d^3=3(b+c)(ad-bc)
cho a+b+c+d=0 c/m a^3+b^3+c^3+d^3=3(b+c)(ad-bc)
cho a+b+c+d= 0
CMR
a^3 + b^3 + c^3 + d^3 = 3(b+c)(ad-bc)
Cho a+b+c+d=0. Chứng minh rằng a^3+b^3+c^3+d^3=3(b+c)(ad-bc)
Hiuhiu mọi ngừi giúp mik vứii aaaT.T
Cho a+b+c+d=0.CMR: \(a^3+b^3+c^3+d^3=3\left(b+c\right).\left(ad-bc\right)\)
Cho a+b+c+d= 0
CMR : \(a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)
Cho a+b+c+d=0, Chứng Minh Rằng : a^3+b^3+c^3+d^3=3.(b+c).(ad-bc)
Cho a, b, c, d thỏa mãn a + b + c + d = 0; ab + ac + bc = 1. Rút gọn biểu thức P = 3(ab − cd)(bc − ad)(ca − bd) (a 2 + 1)(b 2 + 1)(c 2 + 1) ?
A. -1
B. 1
C. 3
D. -3
Cho a+b+c+d=0. Chứng minh rằng :
a3+b3+c3+d3=3(b+c)(ad-bc)