Cho biểu thức:A=\(\dfrac{x}{x-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
(với x>0;x≠1)
a,Rút gọn biểu thức A b,Tính giá trị của biểu thức A tại x=3+2\(\sqrt{2}\)
Cho hai biểu thức:
A = \(\dfrac{2x+3\sqrt{x}}{x\sqrt{x}+1}+\dfrac{1}{x-\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\) và B = \(\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\) với \(x\ge0;x\ne4;x\ne9\)
c) Biểu thức P = A.B sau khi thu gọn được P = \(\dfrac{\sqrt{x}+5}{\sqrt{x}+1}\). Tìm các số tự nhiên x để P nhận giá trị nguyên
c: P nguyên
=>căn x+1+4 chia hết cho căn x+1
=>căn x+1 thuộc {1;2;4}
=>x thuộc {1;9}
cho biểu thức:A= (1+\(\dfrac{2-2\sqrt{x}}{x-1}\)):(\(\dfrac{1}{\sqrt{x}+1}\)-\(\dfrac{\sqrt{x}}{x\sqrt{x}+1}\))với x≥0,x≠1
rút gọn A
Tìm GTLN của A
a: Ta có: \(A=\left(1-\dfrac{2\sqrt{x}-2}{x-1}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{x\sqrt{x}+1}\right)\)
\(=\dfrac{x-1-2\sqrt{x}+2}{x-1}:\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}\)
Cho hai biểu thức:
A = \(\dfrac{x-7}{\sqrt{x}}\) và B = \(\dfrac{3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{2-\sqrt{x}}+\dfrac{2x-3\sqrt{x}+6}{x-4}\), với \(x>0,x\ne4\)
Biết B sau khi thu gọn được: B = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
Tìm tất cả các giá trị nguyên của x để biểu thức P = A.B có giá trị nguyên
P=A*B
\(=\dfrac{x-7}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{x-7}{\sqrt{x}+2}\)
P nguyên
=>x-4-3 chia hết cho căn x+2
=>căn x+2 thuộc Ư(-3)
=>căn x+2=3
=>x=1
Cho biểu thức:
A = \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)với x > 0; x ≠ 1
a) Chứng minh: A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b) Tìm x để 2A = \(2\sqrt{x}+5\)
a.
A = \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
A = \(\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
A = \(\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
A = \(\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
A = \(\dfrac{\left(x-2+\sqrt{x}\right).\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{\left(x-2+\sqrt{x}\right)\left(\sqrt{x}-1\right)+\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{x\sqrt{x}-x-2\sqrt{x}+2+x-\left(x+\sqrt{x}\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{x\sqrt{x}-x-2\sqrt{x}+2+x-\left(x\sqrt{x}+2x+x+2\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{x\sqrt{x}-x-2\sqrt{x}+2+x-x\sqrt{x}-2x-x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{-3x-4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{-\left(3x+4\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{-\sqrt{x}\left(3\sqrt{x}+4\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
A = \(\dfrac{3\sqrt{x}+4}{x-\sqrt{x}+2\sqrt{x}-2}\)
A = \(\dfrac{3\sqrt{x}+4}{x-\sqrt{x}-2}\)
Cho biểu thức:
A=\(\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{4-x}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-1\right)\)(với x>0;x\(\ne\)4)
a.Rút gọn A
b.Tìm x để A<-1
a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{4-x}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-1\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\cdot\left(\dfrac{2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}\right)\)
\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(=\dfrac{-4}{\sqrt{x}+2}\)
Lời giải:
a)
\(A=\left[\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{2\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}\right].\frac{2-\sqrt{x}}{\sqrt{x}}\)
\(=\frac{\sqrt{x}+2+2\sqrt{x}+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{2-\sqrt{x}}{\sqrt{x}}=\frac{4\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{2-\sqrt{x}}{\sqrt{x}}=\frac{-4}{\sqrt{x}+2}\)
b)
$A< -1\Leftrightarrow \frac{-4}{\sqrt{x}+2}+1< 0$
$\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+2}< 0$
$\Leftrightarrow \sqrt{x}-2< 0\Leftrightarrow 0\leq x< 4$
Kết hợp với ĐKXĐ suy ra $0< x< 4$
ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
\(A=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{4-x}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-1\right)\)
\(=\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+2+2\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{2-\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{2-\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{-2}{\sqrt{x}+2}\)
b/ \(A< -1\)
\(\Leftrightarrow\dfrac{-2}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}+2}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\\sqrt{x}-2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x< 4\end{matrix}\right.\)
Vậy..
Rút gọn biểu thức:
A=\(\left(\dfrac{2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x-\sqrt{x}}\right).\left(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)với x>0;x\(\ne\)1
Ta có: \(A=\left(\dfrac{2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x-\sqrt{x}}\right)\left(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)
\(=\left(\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\left(\sqrt{x}-2\right)\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\left(\sqrt{x}-2\right)\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
Rút gọn biểu thức:
A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{x-1}\)với x\(\ge\)0;\(x\ne\)1
Tìm x để A <\(\dfrac{3}{5}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
\(A< \dfrac{3}{5}\Rightarrow\dfrac{3}{5}-A>0\Rightarrow\dfrac{3}{5}-\dfrac{\sqrt{x}-3}{\sqrt{x}-1}>0\)
\(\Rightarrow\dfrac{3\left(\sqrt{x}-1\right)-5\left(\sqrt{x}-3\right)}{5\left(\sqrt{x}-1\right)}>0\Rightarrow\dfrac{12-2\sqrt{x}}{5\left(\sqrt{x}-1\right)}>0\)
\(\Rightarrow\dfrac{2}{5}.\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\Rightarrow\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-\sqrt{x}>0\\\sqrt{x}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}6-\sqrt{x}< 0\\\sqrt{x}-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1< x< 36\\\left\{{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\left(l\right)\end{matrix}\right.\)
\(\Rightarrow1< x< 36\)
\(=>A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
để \(A< \dfrac{3}{5}< =>\dfrac{\sqrt{x}-3}{\sqrt{x}-1}< \dfrac{3}{5}\)
\(< =>\dfrac{5\left(\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{5\left(\sqrt{x}-1\right)}< 0\)
\(< =>\dfrac{2\sqrt{x}-12}{5\left(\sqrt{x}-1\right)}< 0\)
\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}2\sqrt{x}-12>0\\5\left(\sqrt{x}-1\right)< 0\end{matrix}\right.\\\left[{}\begin{matrix}2\sqrt{x}-12< 0\\5\left(\sqrt{x}-1\right)>0\end{matrix}\right.\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\\\left[{}\begin{matrix}x< 36\\x>1\end{matrix}\right.\end{matrix}\right.=>1< x< 36\left(tm\right)\)
Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{x-1}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
Cho hai biểu thức:
A = \(\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\) và B = \(\dfrac{11\sqrt{x}+6}{x-4}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{3}{\sqrt{x}-2}\) với \(x>0;x\ne4\)
Biết biểu thức B sau khi thu gọn được B = \(\dfrac{2\sqrt{x}}{\sqrt{x}-2}\)
c) Đặt P = A : B. Tìm tất cả các giá trị của \(x\) thỏa mãn \(\left|P+1\right|< 3P\)
\(P=A:B=\dfrac{1-\sqrt{x}}{\sqrt{x}-2}:\dfrac{2\sqrt{x}}{\sqrt{x}-2}=\dfrac{1-\sqrt{x}}{2\sqrt{x}}\)
Có: \(\left|P+1\right|< 3P\left(ĐK:x>0\right)\)
\(\Leftrightarrow\left|\dfrac{1-\sqrt{x}}{2\sqrt{x}}+1\right|< 3.\dfrac{1-\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\left|\dfrac{1-\sqrt{x}+2\sqrt{x}}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\left|\dfrac{\sqrt{x}+1}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\)
Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\) nên:
\(\left|\dfrac{\sqrt{x}+1}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\dfrac{\sqrt{x}+1-3+3\sqrt{x}}{2\sqrt{x}}< 0\\ \Leftrightarrow\dfrac{4\sqrt{x}-2}{2\sqrt{x}}< 0\\ \Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}}< 0\\ \Rightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\2\sqrt{x}-1< 0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow0< x< \dfrac{1}{4}\)
Cho biểu thức:
A = -\(\dfrac{x}{4-x}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\) với x\(\ge\)0,x\(\ne\)4
B = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
a) Rút gon A
b) Tính giá trị của A khi x=36
c) Tìm x để A=-\(\dfrac{1}{3}\)
d) Tìm x nguyên đề để biểu thức A có giá trị nguyên
e) Tìm x để A:B=-2
f) Tìm x để A đạt giá trị nhỏ nhất
\(a,A=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\\ b,x=36\Leftrightarrow A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\\ c,A=-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Leftrightarrow3\sqrt{x}=2-\sqrt{x}\\ \Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\\ d,A\in Z\Leftrightarrow1+\dfrac{2}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0;1;3;4\right\}\\ \Leftrightarrow x\in\left\{0;1;9;16\right\}\)
\(e,A:B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}=-2\\ \Leftrightarrow\sqrt{x}=-2\sqrt{x}-2\\ \Leftrightarrow\sqrt{x}=-\dfrac{2}{3}\left(ktm\right)\\ \Leftrightarrow x\in\varnothing\)
a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Rút gọn biểu thức:
A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) với x\(\ge\)0,x\(\ne\)4,x\(\ne\)9
`A=(2\sqrtx-9)(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)(3-sqrtx)(x>=0,x ne 4, x ne 9)`
`=(2\sqrtx-9)(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)(sqrtx-3)`
`=(2sqrtx-9-x+9+2x-3sqrtx-2)/(x-5sqrtx+6)`
`=(x-sqrtx-2)/(x-5sqrtx+6)`
`=((\sqrtx+1)(sqrtx-2))/((sqrtx-2)(sqrtx-3))`
`=(sqrtx+1)/(sqrtx-3)`
`A=(2\sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4, x ne 9)`
`=(2\sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`
`=(2sqrtx-9-x+9+2x-3sqrtx-2)/(x-5sqrtx+6)`
`=(x-sqrtx-2)/(x-5sqrtx+6)`
`=((\sqrtx+1)(sqrtx-2))/((sqrtx-2)(sqrtx-3))`
`=(sqrtx+1)/(sqrtx-3)`