Cho \(a,b\ge1.CMR:a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Cho \(a,b\ge1\)
\(CMR:a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Mong các cao nhân ra tay giúp đỡ ạ,nhớ áp dụng bđt Côsi nha
a√(b-1) = a√1(b-1) ≤ b/2*a=ab/2
b√(a-1) = b√1(a-1) ≤ a/2*b=ab/2
Cộng vế theo vế ta được:
a√(b-1) + b√(a-1) ≤ ab/2 +ab/2 = 2ab/2 = ab
a√(b-1) = a√1(b-1) ≤ b/2*a=ab/2
b√(a-1) = b√1(a-1) ≤ a/2*b=ab/2
Cộng vế theo vế ta được:
a√(b-1) + b√(a-1) ≤ ab/2 +ab/2 = 2ab/2 = ab
Cho \(a\ge1,b\ge1\). CMR : \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
a p dg côsi \(a\sqrt{b-1}=a.1.\sqrt{b-1}\le a.\dfrac{1+b-1}{2}=\dfrac{ab}{2}\)
ttuong tu \(b\sqrt{a-1}\le\dfrac{ab}{2}\)
nên vt\(\le ab\)
dau = xảy ra a=b=2
1 Cho \(a,b\ge1\)
CMR \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Lời giải:
Áp dụng BĐT Bunhiacopxky kết hợp Cauchy ngược dấu ta có:
\((a\sqrt{b-1}+b\sqrt{a-1})^2=(\sqrt{a}.\sqrt{ab-a}+\sqrt{b}.\sqrt{ba-b})^2\leq (a+b)(ab-a+ba-b)\)
\(\leq \left(\frac{a+b+ab-a+ba+b}{2}\right)^2=(ab)^2\)
\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\leq ab\)
Ta có đpcm
Dấu "=" xảy ra khi \(a=b=2\)
Chứng minh rằng nếu \(a\ge1;b\ge1\) thì \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Đặt T là vế trái, áp dụng AM-GM, ta có:
\(a\sqrt{b-1}=a\sqrt{1\left(b-1\right)}\le\dfrac{a.\left(1+b-1\right)}{2}=\dfrac{ab}{2}\)
Tương tự: \(b\sqrt{a-1}\le\dfrac{ba}{2}\)
Cộng vế theo vế 2 BĐT vừa chứng minh, ta được:
\(T\ge\dfrac{ab}{2}+\dfrac{ba}{2}=ab\)(đpcm)
Đẳng thức xảy ra khi a=b=1
Cho \(a,b\ge1\)CMR \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Ta có:
\(\sqrt{b-1}=\sqrt{\left(b-1\right).1}\le\frac{b-1+1}{2}=\frac{b}{2}\)
\(\Rightarrow\) \(a\sqrt{b-1}=\frac{ab}{2}\) \(\left(1\right)\)
Tương tự, ta cũng có: \(b\sqrt{a-1}=\frac{ab}{2}\) \(\left(2\right)\)
Cộng hai bđt trên, suy ra đpcm
Cho a,b là 2 số thực thỏa mãn \(a\ge1,b\ge1\)
Cm: \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(VT\le\frac{a\left(b-1+1\right)}{2}+\frac{b\left(a-1+1\right)}{2}=\frac{ab}{2}+\frac{ab}{2}=ab\) ( Cosi ngược dấu )
:))
Bài 1 : Cho a>c , b>c ( a,b,c>0). Cmr : \(\sqrt{c\sqrt{a-c}}+\sqrt{c\sqrt{b-c}}\le\sqrt{ab}\) (Hướng dẫn : chia cả 2 vế cho \(\sqrt{ab}\) , dùng cô-si)
Bài 2 : Cho \(a\ge1;b\ge1\) . Cmr \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Bài 3 : Tìm GTNN của \(A=\left(a+1\right)^2+\left(\frac{a^2}{a+1}+2\right)^2\) với mọi a\(\ne1\)
Bài 1:
Áp dụng BĐT Bunhiacopxky:
$(\sqrt{c(a-c)}+\sqrt{c(b-c)})^2\leq [c+(b-c)][(a-c)+c]=ab$
$\Rightarrow \sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=2c$
Bài 2:
Áp dụng BĐT Bunhiacopkxy:
\((a\sqrt{b-1}+b\sqrt{a-1})^2=(\sqrt{a}.\sqrt{ab-a}+\sqrt{b}.\sqrt{ab-b})^2\)
\(\leq (a+b)(ab-a+ab-b)=(a+b)(2ab-a-b)\)
Áp dụng BĐT AM-GM:
$(a+b)(2ab-a-b)\leq \left(\frac{a+b+2ab-a-b}{2}\right)^2=(ab)^2$
Do đó:
$(a\sqrt{b-1}+b\sqrt{a-1})^2\leq (ab)^2$
$\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\leq ab$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=2$
Lời giải:
Ta có:
\(A=(a+1)^2+\left(\frac{a^2+2a+2}{a+1}\right)^2=(a+1)^2+\left[\frac{(a+1)^2+1}{a+1}\right]^2\)
Đặt $a+1=t(t\neq 0)$ thì:
$A=t^2+(\frac{t^2+1}{t})^2=t^2+(t+\frac{1}{t})^2$
$=2t^2+\frac{1}{t^2}+2\geq 2\sqrt{2t^2.\frac{1}{t^2}}+2=2\sqrt{2}+2$ theo BĐT AM-GM
Vậy $A_{\min}=2\sqrt{2}+2$
Giá trị này đạt được khi $t=\frac{\pm 1}{\sqrt[4]{2}}$
$\Leftrightarrow a=\frac{\pm 1}{\sqrt[4]{2}}-1$
Bài 1 : Cho a>c , b>c ( a,b,c>0). Cmr : \(\sqrt{c\sqrt{a-c}}+\sqrt{c\sqrt{b-c}}\le\sqrt{ab}\) (Hướng dẫn : chia cả 2 vế cho \(\sqrt{ab}\) , dùng cô-si)
Bài 2 : Cho \(a\ge1;b\ge1\) . Cmr \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Bài 3 : Tìm GTNN của \(A=\left(a+1\right)^2+\left(\frac{a^2}{a+1}+2\right)^2\) với mọi a\(\ne1\)
Bài 1: (không dùng Cô-si) Bình phương hai vế, ta được:
\(c\left(a-c\right)+c\left(b-c\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}\le ab\)
\(ac-2c^2+bc+2c\sqrt{\left(a-c\right)\left(b-c\right)}\le ab\)
\(0\le\left(ab-ac-bc+c^2\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\)
\(0\le\left(a-c\right)\left(b-c\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\)
\(0\le\left(\sqrt{\left(a-c\right)\left(b-c\right)}-c\right)^2\)(đúng)
Vậy BĐT đúng. Xảy ra khi \(a=b=2c\)
Nếu a,b \(\ge1\)thì \(a\sqrt{b+1}+b\sqrt{a-1}\le ab\)ab