Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
EDOGAWA CONAN

1 Cho \(a,b\ge1\)

CMR \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)

Akai Haruma
31 tháng 5 2019 lúc 11:57

Lời giải:

Áp dụng BĐT Bunhiacopxky kết hợp Cauchy ngược dấu ta có:

\((a\sqrt{b-1}+b\sqrt{a-1})^2=(\sqrt{a}.\sqrt{ab-a}+\sqrt{b}.\sqrt{ba-b})^2\leq (a+b)(ab-a+ba-b)\)

\(\leq \left(\frac{a+b+ab-a+ba+b}{2}\right)^2=(ab)^2\)

\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\leq ab\)

Ta có đpcm

Dấu "=" xảy ra khi \(a=b=2\)