Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
katori mekirin
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 11 2021 lúc 18:39

c: \(=\left(x+y-5\right)\left(x+y+5\right)\)

helloeveryone
Xem chi tiết
Toru
28 tháng 10 2023 lúc 21:29

\(A=4x^2-5xy+3y^2\\\Rightarrow 2A=2\cdot(4x^2-5xy+3y^2)\\\Rightarrow2A=8x^2-10xy+6y^2\\B=3x^2+2xy+y^2\\\Rightarrow3B=3\cdot(3x^2+2xy+y^2)\\\Rightarrow3B=9x^2+6xy+3y^2\\C=-x^2+3xy+2y^2\)

Khi đó: $2A-3B-C$

$=(8x^2-10xy+6y^2)-(9x^2+6xy+3y^2)-(-x^2+3xy+2y^2)$

$=8x^2-10xy+6y^2-9x^2-6xy-3y^2+x^2-3xy-2y^2$

$=(8x^2-9x^2+x^2)+(-10xy-6xy-3xy)+(6y^2-3y^2-2y^2)$

$=-19xy+y^2$

Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 21:22

2A-3B-C

\(=2\left(4x^2-5xy+3y^2\right)-3\left(3x^2+2xy+y^2\right)+x^2-3xy-2y^2\)

\(=8x^2-10xy+6y^2-9x^2-6xy-3y^2+x^2-3xy-2y^2\)

\(=-19xy+y^2\)

Nguyễn Quý Cảnh
Xem chi tiết
Yen Nhi
29 tháng 3 2022 lúc 22:32

`Answer:`

undefined

Khách vãng lai đã xóa

\(a)\left(-3x^2y-2xy^2+6\right)+\left(-x^2y+5xy^2-1\right)\)

\(=-3x^2y-2xy^2+6+-x^2y+5xy^2-1\)

\(=\left(-3x^2y-x^2y\right)+\left(-2xy^2+5xy^2\right)+\left(6-1\right)\)

\(=-4x^2y+3xy^2+5\)

\(b)\left(1,6x^3-3,8x^2y\right)+\left(-2,2x^2y-1,6x^3+0,5xy^2\right)\)

\(=1,6x^3-3,8x^2y+-2,2x^2y-1,6x^3+0,5xy^2\)

\(=\left(1,6x^3-1,6x^3\right)+\left(-3,8x^2y+-2,2x^2y\right)+0,5xy^2\)

\(=-6x^2y+0,5xy^2\)

\(c)\left(6,7xy^2-2,7xy+5y^2\right)-\left(1,3xy-3,3xy^2+5y^2\right)\)

\(=6,7xy^2-2,7xy+5y^2-1,3xy+3,3xy^2-5y^2\)

\(=\left(6,7xy^2+3,3xy^2\right)+\left(-2,7xy-1,3xy\right)+\left(5y^2-5y^2\right)\)

\(=10xy^2+-4xy\)

\(=10xy^2-4xy\)

\(d)\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)

\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)

\(=\left(3x^2+x^2-4x^2\right)+\left(-2xy-xy\right)+\left(y^2+2y^2+y^2\right)\)

\(=-3xy+4y^2\)

\(e)\left(x^2+y^2-2xy\right)-\left(x^2+y^2+2xy\right)+\left(4xy-1\right)\)

\(=x^2+y^2-2xy-x^2-y^2-2xy+4xy-1\)

\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(-2xy-2xy+4xy\right)-1\)

\(=-1\)

Khách vãng lai đã xóa
Thái Đào
Xem chi tiết
Thái Đào
Xem chi tiết
Tạ Thu Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 7 2020 lúc 17:51

a) Ta có: \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)

\(=x^4+x^3y-x^3y-x^2y^2+x^2y^2+xy^3-xy^3-y^4\)

\(=x^4-y^4\)

Thay x=2 và \(y=-\frac{1}{2}\) vào biểu thức \(A=x^4-y^4\), ta được:

\(A=2^4-\left(-\frac{1}{2}\right)^4\)

\(=16-\frac{1}{16}\)

\(=\frac{255}{16}\)

Vậy: \(\frac{255}{16}\) là giá trị của biểu thức \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\) tại x=2 và \(y=-\frac{1}{2}\)

b) Ta có: \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)

\(=a^5+a^4b+a^3b^2+a^2b^3+ab^4-a^4b-a^3b^2-a^2b^3-ab^4-b^5\)

\(=a^5-b^5\)

Thay a=3 và b=-2 vào biểu thức \(B=a^5-b^5\), ta được:

\(B=3^5-\left(-2\right)^5\)

\(=243-\left(-32\right)\)

\(=243+32=275\)

Vậy: 275 là giá trị của biểu thức \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\) tại a=3 và b=-2

c) Ta có: \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\)

\(=x^4+x^2y^2-2x^3y-2xy^3+2x^2y^2+2y^4+2x^3-3x^2y^2+2xy^3\)

\(=x^4-2x^3y+2y^4+2x^3\)

Thay \(x=y=\frac{-1}{2}\) vào biểu thức \(C=x^4-2x^3y+2y^4+2x^3\), ta được:

\(C=\left(-\frac{1}{2}\right)^4-2\cdot\left(-\frac{1}{2}\right)^3\cdot\frac{-1}{2}+2\cdot\left(-\frac{1}{2}\right)^4+2\cdot\left(-\frac{1}{2}\right)^3\)

\(=\frac{1}{16}-2\cdot\frac{-1}{8}\cdot\frac{-1}{2}+2\cdot\frac{1}{16}+2\cdot\frac{-1}{8}\)

\(=\frac{1}{16}-\frac{1}{8}+\frac{1}{8}-\frac{1}{4}\)

\(=\frac{1}{16}-\frac{1}{4}=\frac{1}{16}-\frac{4}{16}=\frac{-3}{16}\)

Vậy: \(-\frac{3}{16}\) là giá trị của biểu thức \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\) tại \(x=y=\frac{-1}{2}\)

Girl 2k3
Xem chi tiết
Laura
26 tháng 10 2019 lúc 19:45

\(a)xy+3x-2y=11\)

\(\Leftrightarrow xy+3x-2y-6=5\)

\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)

\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=5\)

\(\Leftrightarrow\hept{\begin{cases}y+3=-1\\x-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=1\\x-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\\x=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=-5\\x-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-8\\x=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=5\\x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)

Khách vãng lai đã xóa
Laura
26 tháng 10 2019 lúc 20:05

\(b)2x^2-2xy+x-y=12\)

\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)=12\)

\(\Leftrightarrow\left(x-y\right)\left(2x+1\right)=12\)

\(\Rightarrow\left(x-y\right);\left(2x+1\right)\inƯ\left(12\right)\)

\(\RightarrowƯ\left(12\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)

Vì 2x+1 luôn lẻ

\(\Rightarrow2x+1\in\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=-1\\x-y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=1\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=-3\\x-y=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=3\\x-y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Khách vãng lai đã xóa
Laura
26 tháng 10 2019 lúc 20:23

\(c)2xy-10y-x=13\)

\(\Leftrightarrow x\left(2y-1\right)-2y.5+5=18\)

\(\Leftrightarrow x\left(2y-1\right)-5\left(2y-1\right)=18\)

\(\Leftrightarrow\left(2y-1\right)\left(x-5\right)=18\)

\(\Leftrightarrow2y-1;x-5\inƯ\left(18\right)\)

\(\RightarrowƯ\left(18\right)\in\left\{-1;1;-2;2;-3;3;-6;6;-9;9;-18;18\right\}\)

Vì 2y-1  luôn lẻ

=>2y-1 thuộc {-1;1;-3;3;-9;9}

=> Làm  tương tự nhé

\(e)xy-2y^2+8y-3x=13\)

\(\Leftrightarrow xy-2y^2+2y+6y-3x-6=7\)

\(\Leftrightarrow y\left(x-2y+2\right)+3\left(-x+2y-2\right)=7\)

\(\Leftrightarrow y\left(x-2y+2\right)-3\left(x-2y+2\right)=7\)

\(\Leftrightarrow\left(x-2y+2\right)\left(y-3\right)=7\)

Tự khai triển như các câu trên.

Mình đg bận nên ko lm đc hết câu.

Khách vãng lai đã xóa
Nèk Zyy
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
4 tháng 8 2020 lúc 22:12

a) \(\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)

\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)

\(=4y^2-3xy\)

b) \(\left(x^2-y^2+2xy\right)-\left(x^2+xy+2y^2\right)+\left(4xy-1\right)\)

\(=x^2-y^2+2xy-x^2-xy-2y^2+4xy-1\)

\(=-3y^2+5xy-1\)

Nguyễn Thanh Hằng
4 tháng 8 2020 lúc 22:14

a/ \(\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)

\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)

\(=-3xy+4y^2\)

b/ \(\left(x^2-y^2+2xy\right)-\left(x^2+xy+2y^2\right)+\left(4xy-1\right)\)

\(=x^2-y^2+2xy-x^2-xy-2y^2+4xy-1\)

\(=-3y^2+5xy-1\)

20.NGUYỄN DUY NGUYÊN 7E
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2022 lúc 15:33

\(Q=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)=x^2+2xy+y^3\)

\(P=\left(\dfrac{1}{3}x^2y-\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{2}xy^2\right)-\left(xy+5xy\right)=\dfrac{3}{2}xy^2-6xy\)