Cho a,b thỏa mãn \(a+b\ne0\)
Chứng minh rằng\(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)
Cho hai số a, b thỏa mãn a + b \(\ne0\). Chứng minh rằng: \(a^2+b^2+\left( \frac{ab+1}{a+b}\right)^2\ge2.\)
Đặt A =\(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\)
Vì a + b \(\ne\)0 nên A luôn được xác định.
Giả sử \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)
\(\Leftrightarrow\frac{\left(a^2+b^2\right)\left(a+b\right)^2}{\left(a+b\right)^2}+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}-\frac{2\left(a+b\right)^2}{\left(a+b\right)^2}\ge0\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)(vì a + b \(\ne\)0)
\(\Leftrightarrow[\left(a^2+2ab+b^2\right)-2ab]\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)
\(\Leftrightarrow[\left(a+b\right)^2-2ab]\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^4-\left[2ab\left(a+b\right)^2+2\left(a+b\right)^2\right]+\left(ab+1\right)^2\ge0\)
\(\Leftrightarrow\left[\left(a+b\right)^2\right]^2-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2\ge0\)
\(\left[\left(a+b\right)^2-\left(ab+1\right)^2\right]^2\ge0\)(luôn đúng)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}a+b\ne0\\\Leftrightarrow a=b\end{cases}}\Leftrightarrow a=b\left(a,b\ne0\right)\)
Vậy \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge\)2 với a, b là các số thỏa mãn a+b \(\ne\)0
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}a=b\\a+b\ne0\end{cases}\Leftrightarrow a=b}\)(a,b \(\ne\)0)
Vậy \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\) với a, b là các số thỏa mãn \(a+b\ne0\)
Cho a;b là các số thực thỏa mãn điều kiện \(a+b\ne0\). Chứng minh rằng
\(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)
Ta có: \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(a+b\right)^2+\left(ab+1\right)^2\ge2\left(a+b\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2\left[\left(a+b\right)^2-2ab\right]-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-ab-1\right]^2\ge0\)(đúng)
\(\Leftrightarrow dpcm\)
⇔(a2+b2)(a+b)2+(ab+1)2≥2(a+b)2
⇔(a+b)2[(a+b)2−2ab]−2(a+b)2+(ab+1)2≥0
⇔(a+b)4−2ab(a+b)2−2(a+b)2+(ab+1)2≥0
⇔[(a+b)2−ab−1]2≥0(đúng)
k mình đi
Cho các số thực a, b thảo mãn \(a+b\ne0\). Chứng minh rằng: \(a^2+b^2+\left(\frac{1+ab}{a+b}\right)^2\ge2\)
ta có:\(a^2+b^2+\left(\frac{1+ab}{a+b}\right)^2=\left(a+b\right)^2+\left(\frac{1+ab}{a+b}\right)^2-2ab\ge2\left(1+ab\right)-2ab=2\)
Cho hai số a,b thoả mãn : \(a+b\ne0\)
Chứng minh rằng : \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)
THANKS MN NHÌU
\(BĐT\Leftrightarrow a^2+b^2-2+\left(\frac{ab+1}{a+b}\right)^2\ge0\)
\(\Leftrightarrow a^2+2ab+b^2-2ab-2+\left(\frac{ab+1}{a+b}\right)^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2\ge0\)
\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2\ge0\) luôn đúng
Cho hai số a,b thỏa mãn \(a+b\ne0\).
Chứng minh rằng:
\(a^2+b^2+\left(\dfrac{ab+1}{a+b}\right)^2\ge2\)
\(a^2+b^2+\left(\dfrac{ab+1}{a+b}\right)^2>hoặc=2\)
<=>\(a^2+b^2+\left(\dfrac{ab+1}{a+b}\right)^2-2>hoặc=0\)
<=>\(\left(a+b\right)^2+\left(\dfrac{ab+1}{a+b}\right)^2-2\left(ab+1\right)>hoặc=0\)
<=>\(\left(a+b-\dfrac{ab+1}{a+b}\right)^2>hoặc=0\)
(đpcm)
chúc bạn học tốt ^ ^
Cho a,b,c là các số thực không âm thỏa mãn, \(\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)chứng minh rằng:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\ge2\)
Ta có:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)
\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)^2}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)
Tương tự ta được:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)
\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)
Vậy ta cần chứng minh:
\(\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\ge2\)
Ta viết lại bất đẳng thức trên thành:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức đã được chứng minh.
Cho \(a,b,c\text{ }>0\) thỏa mãn \(abc=1.\)Chứng minh:
\(a^2+b^2+c^2+3\ge2\left(ab+bc+ca\right)\)
Do \(abc=1\), nếu viết BĐT về dạng:
\(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)
Có lẽ bạn sẽ nhận ra ngay. Một bài toán vô cùng quen thuộc.
Chắc với bài toán này thì bạn ko cần lời giải nữa, nó có ở khắp mọi nơi.
Anh em cùng cha khác ông nội với Iran 96
Cho các số thực không âm thỏa mãn \(\frac{a}{b+c}\ge2\) Chứng minh rằng:
\(\left(ab+bc+ca\right)\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{49}{18}\)
Mời mọi người :D
Chắc áp dụng BĐT AM-GM á
Bất đẳng thức sau đây đúng với mọi a, b, c không âm:
\(\left(ab+bc+ca\right)\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{49}{18}+k\left(\frac{a}{b+c}-2\right)\)
với \(k=\frac{23}{25}\).
Note. \(k_{\text{max}}\approx\text{0.92102588865167}\) là nghiệm của phương trình bậc 5:
15116544*k^5+107495424*k^4-373143024*k^3+280903464*k^2+209797812*k-227353091 = 0
Biết a,b là hai số thực dương thỏa mãn \(a^2+b^2=1\) .Chứng minh rằng
\(\frac{1}{a}+\frac{1}{b}-\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\ge2\sqrt{2}\)
\(\frac{1}{a}+\frac{1}{b}-\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2=\frac{1}{a}+\frac{1}{b}-\frac{a}{b}-\frac{b}{a}+2=\frac{a+b-1}{ab}+2\)
\(\frac{2\left(a+b-1\right)}{\left(a+b\right)^2-1}+2=\frac{2}{a+b+1}+2\ge\frac{2}{\sqrt{2\left(a^2+b^2\right)}+1}+2=\frac{2}{\sqrt{2}+1}+2=2\sqrt{2}\)
Dấu = xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)
Đặt \(a=\frac{x^2}{z},b=\frac{y^2}{z}\rightarrow x^4+y^4=z^2\) where x, y, z> 0
\(z\left(\frac{1}{x^2}+\frac{1}{y^2}\right)-\left(\frac{x}{y}-\frac{y}{x}\right)^2\ge2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x^4+y^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge2\sqrt{2}+\left(\frac{x}{y}-\frac{y}{x}\right)^2\)
\(\Leftrightarrow\frac{2\left(3-2\sqrt{2}\right)\left(x^2-y^2\right)^2}{x^2y^2}\ge0\) *Đúng*
ta chứng minh \(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{2}+\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)
ta thực hiện các phép biển đổi tương đương
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{2}+\frac{a}{b}+\frac{b}{a}-2\)
\(\Leftrightarrow a+b+2ab\ge2\sqrt{2}ab+1\)
\(\Leftrightarrow a+b+\left(a+b\right)^2-1\ge2\sqrt{2}\left(a+b\right)^2+1-\sqrt{2}\)
\(\Leftrightarrow\left(1-\sqrt{2}\right)t^2+t+\sqrt{2}-2\ge0,t=a+b\)
\(\Leftrightarrow\left(1-\sqrt{2}\right)\left(t-\sqrt{2}\right)\left(t-1\right)\ge0\)
từ điều kiện đề bài ta dễ dàng suy ra được 1<t\(\le\sqrt{2}\)nên bắt đẳng thức cuối cùng đúng
dấu "=" xảy ra khi và chỉ khi a=b