Cho x^2-2x+4m+1=0 Tìm m để pt có nghiệm x =2 tìm nghiệm còn lại
Tìm m để pt sau có nghiệm và tính nghiệm còn lại: 2x2-(4m+3)x+2m2 - 1=0 .
Cho pt: x^2 -2(m-1)x +m^2 -4m +3 a) Tìm m để pt có 1 nghiệm là 5,tìm nghiệm còn lại b) Tìm hệ thức liên hệ giữa các nghiệm k phụ thuộc vào m c) Tìm để pt có 2 nghiệm x1 x2 thỏa mãn x1 -2x2 =1
a: Thay x=5 vào pt, ta được:
5^2-2(m-1)*5+m^2-4m+3=0
=>m^2-4m+3+25-10m+10=0
=>m^2-14m+38=0
=>(m-7)^2=11
=>\(m=\pm\sqrt{11}+7\)
b: x1+x2=2m-2
x1*x2=m^2-4m+3
(x1+x2)^2-4x1x2
=4m^2-8m+4-4m^2+4m-6
=-4m-2
(x1+x2)^2-4x1x2+2(x1+x2)
=-4m-2+4m-4=-6
Bài 1: Cho pt ẩn x:
x2 - 2(m + 1)x + m2 + 7 = 0 (1)
a) Giải pt (1) khi m = -1; m = 3.
b) Tìm m để pt (1) có nghiệm là 4. Tìm nghiệm còn lại.
c) Tìm m để pt (1) có 2 nghiệm x1, x2 thỏa:
* x12 + x22 = 0
* x1 - x2 = 0
Bài 2: Cho pt ẩn x:
x2 - 2x - m2 - 4 = 0 (1)
a) Giải pt (1) khi m = -2.
b) Tìm m để pt (1) có 2 nghiệm x1, x2 thỏa mãn:
* x12 + x22 = 20
* x13 + x23 = 56
* x1 - x2 = 10
Bài 1:
a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\
\Leftrightarrow x^2+1+7=0\\
\Leftrightarrow x^2+8=0\left(vô.lí\right)\)
Thay m=3 vào (1) ta có:
\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)
b, Thay x=4 vào (1) ta có:
\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)
c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)
\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)
\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)
Bài 2:
a,Thay m=-2 vào (1) ta có:
\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)
\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)
\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)
\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)
Cho PT: x2-2(m+1)x+4m+4=0
1) Giải PT với m=5
2) Tìm m để PT có 1 nghiệm bằng 2. Tìm nghiệm còn lại
3) Tìm m để PT có 2 nghiệm phân biệt. Tính 2 nghiệm ấy theo m
4) Tìm giá trị của m để PT có 2 nghiệm x1, x2 thoả mãn
a) x13-x23=-32
b) (x1-3x2)(x2-3x1)=0
c) nghiệm này gấp 4 lần nghiệm kia
x² - 2(m+1)x +4m =0 a) tìm m để pt có nghiệm là 4, dung 2 hệ thức Vi-Ét tìm nghiệm còn lại b) tìm m để pt có 2 nghiệm cùng dấu c) tìm m để pt có 2 nghiệm khác dấu
thay x=4 vào phương trình tìm ra m rồi lại thay m vào phương trình tìm nghiệm còn lại
cùng dấu thì x1 + x2>0 Khác dấu thì a vs c trái dấu (có a > hoặc = 0 suy ra 4m<0 suy ra m<0 )
x1 x x2>0
Đenta >0
Bài 6: Cho PT x² + mx + m+3=0.
c) Giải PT khi m -2.
d) Tìm m để PT có hai nghiệm phân biệt x, ,x, thỏa mãn x +x =9.
e) Tim m để PT có hai nghiệm phân biệt x, r, thỏa mãn 2x, +3x, = 5.
f) Tìm m để PT có nghiệm x, =-3. Tính nghiệm còn lại.
g) Tìm biểu thúức liên hệ giữa hai nghiệm phân biệt x,,x, không phụ thuộc vào m.
GIÚP MÌNH GẤP VỚI Ạ MÌNH ĐANG CẦN GẤP ;<
c: Thay m=-2 vào pt, ta được:
\(x^2-2x+1=0\)
hay x=1
f: Thay x=-3 vào pt, ta được:
\(9-3m+m+3=0\)
=>-2m+12=0
hay m=6
Cho các pt sau :\(x^2-8x+4m=0\left(1\right);x^2+x-4m=0\left(2\right)\)
a) Tìm m để 2 pt cùng có nghiệm.
b) Tìm m để 1 trong các nghiệm của pt(1) gấp đôi 1 nghiệm nào đó của pt(2).
Lời giải:
a) Để 2 pt cùng có nghiệm thì:
\(\left\{\begin{matrix} \Delta'_1=16-4m\geq 0\\ \Delta_2=1+16m\geq 0\end{matrix}\right.\Leftrightarrow 4\geq m\geq \frac{-1}{16}\)
b)
Gọi $2a,a$ lần lượt là nghiệm của PT $(1)$ và PT $(2)$:
Ta có:
\(\left\{\begin{matrix} (2a)^2-8.2a+4m=0\\ a^2+a-4m=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2-4a+m=0\\ a^2+a-4m=0\end{matrix}\right.\)
\(\Rightarrow 5a=5m\Leftrightarrow a=m\)
Thay vô: $m^2+m-4m=0\Leftrightarrow m^2-3m=0$
$\Leftrightarrow m=0$ hoặc $m=3$
Tìm m để pt trìnhx2 -2x+m-1=0 có 1 nghiệm x= -1.Tìm nghiệm còn lại
Thay x = -1 vào phương trình, ta có:
\(\left(-1\right)^2-2\left(-1\right)+m-1=0\)
<=> m = -2
PT: x2 - 2x - 3 = 0
<=> (x-3)(x+1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy nghiệm còn lại là x = 3
Thay x = -1 vào pt trên ta được
\(1-2\left(-1\right)+m-1=0\Leftrightarrow m+2=0\Leftrightarrow m=-2\)
Thay m = -2 vào ta được \(x^2-2x-3=0\)
Ta có a - b + c = 0
vậy pt có 2 nghiệm \(x=-1;x=3\)
hay nghiệm còn lại là 3