Rút gọn biểu thức:
\(3x\left(x-1\right)^2-2x\left(x+3\right)\left(x-3\right)+4x\left(x-4\right)\)
Rút gọn các biểu thức sau
a, \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
a: \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
\(=x^3-16x^2+25x\)
Rút gọn biểu thức sau: A=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+4\right)\left(3-x\right)}\)
Rút gọn biểu thức:
\(\left(x+3\right)^2+\left(2x+1\right)\left(3x-5\right)-2x\left(3-x\right)+4x+25\)
Rút gọn các biểu thức:
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
a)
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)
\(=-27\)
or
\(A=x^3+27-54-x^3=-27\)
b)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
c)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
d)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=6x^2-3x-10\)
Rút gọn các biểu thức sau:
a)
\(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(=x\left[2\left(2x-1\right)^2-3\left(x^2-9\right)-4\left(x+1\right)^2\right]\)
\(=x\left(8x^2-8x+1-3x^2+27-4x^2-8x-4\right)\)
\(=x\left(x^2-16x+28\right)=x\left(x-2\right)\left(x-14\right)\)
\(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
\(=x^3-16x^2+25x\)
Rút gọn các biểu thức :
a, \(\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)\)
b, \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(c,\left(x+y-z\right)^2+2\left(z-x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(a,\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)=9x^2+30x+25+9x^2-30x+25-9x^2+4=9x^2+54\)
\(b,BT=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x=x^3-16x^2+25x\)
\(c,BT=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-z-x-y\right)^2=z^2\)
rút gọn biểu thức
\(\left(x^2-1\right)\left(x+2\right)-\left(x-4\right)\left(x^2+4x+16\right)\)
làm tính nhân
\(2x\left(3x-2\right)^2\)
\(\left(x-3\right)\left(x^2-3x+9\right)\)
\(\left(x^2-1\right)\left(x+2\right)-\left(x-4\right)\left(x^2+4x+16\right)\)
\(=x^3+2x^2-x-2-\left(x^3-4^3\right)\)
\(=x^3+2x^2-x-2-x^3+64\)
\(=2x^2-x+62\)
\(2x\left(3x-2\right)^2\)
\(=2x\left(9x^2-12x+4\right)\)
\(=18x^3-24x^2+8x\)
\(\left(x-3\right)\left(x^2-3x+9\right)\)
\(=x^3-3x^2+9x-3x^2+9x-27\)
\(=x^3-3x^2+18x-27\)
\(\left(x^2-1\right)\left(x+2\right)-\left(x-4\right)\left(x^2+4x+16\right)\)
\(=\left(x^2-1^2\right)\left(x+2\right)-x^3-4^3\)
\(=\left(x+1\right)\left(x-1\right)\left(x+2\right)-x^3-64\)
Rút gọn biểu thức:
\(2x\left(3x^3-x\right)-4x^2\left(x-x^2+1\right)+\left(x-3x^2\right)x\)
2x(3x3-x)-4x2(x-x2+1)+(x-3x2)x
=6x4-2x2-4x3+4x4-4x2+x2-3x3
=10x4-7x3-5x2
Rút gọn biểu thức:
\(3x\left(2x-1\right)^2-\left(2x+3\right)^3-4x\left(x+1\right)^2\)
rút gọn các biểu thức sau
a, \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
b, \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
a: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2=16x^2\)
b: \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3+2x^2-x-2-x^3+8\)
\(=2x^2-x+6\)
a) \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left[\left(2x+1\right)+\left(2x-1\right)\right]^2\)
\(=\left(2x+1+2x-1\right)^2\)
\(=\left(4x\right)^2\)
\(=16x^2\)
b) \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x^3+2x^2-x-2\right)-\left(x^3-8\right)\)
\(=x^3+2x^2-x-2-x^3+8\)
\(=2x^2-x+6\)
\(a,\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\cdot\left[\left(2x\right)^2-1^2\right]+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\cdot\left(2x+1\right)\cdot\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left[\left(2x+1\right)+\left(2x-1\right)\right]^2\)
\(=\left(2x+1+2x-1\right)^2\)
\(=\left(4x\right)^2\)
\(=16x^2\)
\(---\)
\(b,\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^2\left(x+2\right)-\left(x+2\right)-\left(x^3-2^3\right)\)
\(=x^3+2x^2-x-2-x^3+8\)
\(=2x^2-x+6\)