Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 10 2018 lúc 7:52

Áp dụng hệ thức lượng trong tam giác ABC vuông tại A

Ta có:Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy S A B C   =   1 2 A B . A C   =   1 2 . 2 13   . 3 13 =   39 c m 2

Chọn đáp án A.

Xun TiDi
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2021 lúc 23:40

a: \(AH=2\sqrt{6}\left(cm\right)\)

\(AB=2\sqrt{10}\left(cm\right)\)

\(AC=2\sqrt{15}\left(cm\right)\)

Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 21:13

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)

Quỳnh Lữ Diễm
29 tháng 10 2021 lúc 20:00

Giải ra đi

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 2 2018 lúc 4:17

Chọn A

Mark
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 21:05

b: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 9 2019 lúc 4:05

Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật

Suy ra: AH = DE (tính chất hình chữ nhật)

Tam giác ABC vuông tại A và có AH là đường cao

Theo hệ thức giữa đường cao và hình chiếu ta có:

A H 2  = HB.HC = 4.9 = 36 ⇒ AH = 6 (cm)

Vậy DE = 6 (cm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 1 2017 lúc 16:02

Tam giác BDH vuông tại D có DM là đường trung tuyến nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phạm Quỳnh Anh
Xem chi tiết
Trần Nhật Huy
28 tháng 10 2021 lúc 12:03

undefined

Triết Phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2021 lúc 22:03

c: Xét ΔABM vuông tại A có AK là đường cao

nên \(BK\cdot BM=AB^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)

anh phuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 10 2021 lúc 21:47

c: Xét ΔABM vuông tại A có AK là đường cao ứng với cạnh huyền BM

nên \(BK\cdot BM=AB^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)