Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nguyễn Xuân Phát
Xem chi tiết
Akai Haruma
13 tháng 12 2021 lúc 22:00

Lời giải:
$A=(2+2^2)+(2^3+2^4)+....+(2^{99}+2^{100})$
$=2(1+2)+2^3(1+2)+...+2^{99}(1+2)$

$=2.3+2^3.3+...+2^{99}.3$

$=3(2+2^3+...+2^{99})\vdots 3$

Ta có đpcm.

phan thi hong son
Xem chi tiết
nguyễn hoàng phương anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2023 lúc 7:46

loading...  

Duong
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2023 lúc 0:57

\(C=3-3^2+3^3-3^4+3^5-3^6+...-3^{22}+3^{23}-3^{24}\)

\(=\left(3-3^2+3^3\right)-\left(3^4-3^5+3^6\right)+...-\left(3^{22}-3^{23}+3^{24}\right)\)

\(=3\left(1-3+3^2\right)-3^4\left(1-3+3^2\right)+...-3^{22}\left(1-3+3^2\right)\)

\(=7\left(3-3^4+...-3^{22}\right)⋮7\)

\(C=3-3^2+3^3-3^4+3^5-3^6+...-3^{22}+3^{23}-3^{24}\)

\(=\left(3-3^2+3^3-3^4\right)+\left(3^5-3^6+3^7-3^8\right)+...+\left(3^{21}-3^{22}+3^{23}-3^{24}\right)\)

\(=3\left(1-3+3^2-3^3\right)+3^5\left(1-3+3^2-3^3\right)+...+3^{21}\left(1-3+3^2-3^3\right)\)

\(=-20\cdot\left(3+3^5+...+3^{21}\right)\)

\(=-60\cdot\left(1+3^4+...+3^{20}\right)⋮60\)

\(C⋮60;C⋮7\)

mà ƯCLN(60;7)=1

nên C chia hết cho 60*7=420

nguyen khanh li
Xem chi tiết
nguyen khanh li
22 tháng 4 2015 lúc 19:55

giup minh voi sap phai nop roi

Chu anh tú
18 tháng 1 2018 lúc 19:40

câu a Achia hết cho 128

nguyễn thị ly na
Xem chi tiết
Thong the DEV
10 tháng 10 2018 lúc 21:22

Hơi khó nha! @@@

â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1  là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:

\(x:5=m\)(dư a)

\(y:5=n\)(dư a)

\(x-y⋮5\)

Ta có:

\(5.5=5+5+5+5+5\)

\(5.4=5+5+5+5\)

=> Khoảng cách giữa mỗi tích là 5. 

Vậy tích 1 + 5 = tích 2

=> tích 1 (dư a) + 5 = tích 2 (dư a)

Mà:

 5 = tích 2 (dư a) -  tích 1 (dư a)

5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó =  0))

tích 2 -  tích 1 = 5

Không có thời gian làm câu b sorry bạn nhé!

Mình sẽ làm sau!

Nguyễn Phương Thảo
Xem chi tiết
Roronoa
15 tháng 10 2018 lúc 21:44

\(1,A=1+3+3^2+...+3^{10}\)

\(A=1.\left(1+3+9\right)+...+3^6.\left(1+3+9\right)+3^{10}\)

Vì \(\hept{\begin{cases}1.\left(1+3+9+\right)+3^3.\left(1+3+9\right)+3^6.\left(1+3+9\right)⋮\\3^{10}⋮̸13\end{cases}13}\)

\(A⋮̸13\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 7 2019 lúc 14:01

a) A chia hết cho 2 vì tất cả các số hạng của tổng đều chia hết cho 2.

b) Ta tách ghép các số hạng của A thành các nhóm sao cho mỗi nhóm xuất hiện thừa số chia hết cho 3. Khi đó:

Nguyễn Ngọc Linh
10 tháng 10 2021 lúc 11:54
4₁ A= 2 +2²³ +2 ² + + 220 a₁ A = 2₁ [1 + 2 +2²¹ +. +2¹2):2 Vay A chia hết choi b₁ A = 2 + 2² +2²+ + 220 (2 +2²) + (2 ² + 2 9) + . + (219+220) = 2₁ (1 + 2) + 2² (2+1). .. +2 19 (2+1) + = 2₁3 + 2³.3 + ..+ 219.3. = (2+2 ³+ + 219) 3:3 Vậy A chia hết cho 3 A = 2 + 2 ² + 2³ + 2ª +. 20 + 2.9+ +2 2+2 ³ + 2² +2²4 + + 218 + 720 +2²³ +2²+ +218 +220 2. (2 +2²) + 2² (1+2²) +.. + 218 ( 1 +2²) = 2 5 +2²5 + + 218 5. 12 +2° + 2 ... +218 ) 5 : 5. vậy A chia hết cho 5
Khách vãng lai đã xóa
ko cần nói
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
13 tháng 10 2023 lúc 6:13

`#3107.101107`

a,

\(C=2+2^3+2^5+...+2^{23}\)

\(=\left(2+2^3+2^5\right)+\left(2^5+2^7+2^9\right)+...+\left(2^{19}+2^{21}+2^{23}\right)\)

\(=2\left(1+2^2+2^4\right)+2^5\cdot\left(1+2^2+2^4\right)+...+2^{19}\cdot\left(1+2^2+2^4\right)\)

\(=\left(1+2^2+2^4\right)\cdot\left(2+2^5+...+2^{19}\right)\)

\(=21\cdot\left(2+2^5+...+2^{19}\right)\)

Vì \(21\text{ }⋮\text{ }21\)

\(\Rightarrow21\left(2+2^5+...+2^{19}\right)\text{ }⋮\text{ }21\)

Vậy, \(C\text{ }⋮\text{ }21\)

b,

\(C=2+2^3+2^5+...+2^{23}\)

\(=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{21}+2^{23}\right)\)

\(=\left(2+2^3\right)+2^4\cdot\left(2+2^3\right)+...+2^{20}\cdot\left(2+2^3\right)\)

\(=\left(2+2^3\right)\cdot\left(1+2^4+...+2^{20}\right)\)

\(=10\cdot\left(1+2^4+...+2^{20}\right)\)

Vì \(10\text{ }⋮\text{ }10\)

\(\Rightarrow10\cdot\left(1+2^4+...+2^{20}\right)\text{ }⋮\text{ }10\)

Vậy, \(C\text{ }⋮\text{ }10.\)

Kiều Vũ Linh
13 tháng 10 2023 lúc 6:53

a) c = 2 + 2³ + 2⁵ + ... + 2¹⁹ + 2²¹ + 2²³

= (2 + 2³ + 2⁵) + (2⁷ + 2⁹ + 2¹¹) + ... + (2¹⁹ + 2²¹ + 2²³)

= 2.(1 + 2² + 2⁴) + 2⁷.(1 + 2² + 2⁴) + ... + 2¹⁹.(1 + 2² + 2⁴)

= 2.21 + 2⁷.21 + ... + 2¹⁹.21

= 21.(2 + 2⁷ + ... + 2¹⁹) ⋮ 21

Vậy c ⋮ 21

b) c = 2 + 2³ + 2⁵ + 2⁷ + ... + 2²¹ + 2²³

= (2 + 2³) + (2⁵ + 2⁷) + ... + (2²¹ + 2²³)

= 10 + 2⁴.(2 + 2³) + ... + 2²⁰.(2 + 2³)

= 10 + 2⁴.10 + ... + 2²⁰.10

= 10.(1 + 2⁴ + ... + 2²⁰) ⋮ 10

Vậy c ⋮ 10

Diem Hokieu
Xem chi tiết
pham thai hung
20 tháng 10 2018 lúc 21:14

ử dụng phương pháp phản chứng 
giả sử n chia hết cho 5 
=>n có dạng 5k 
=>n^2+n+1=25k^2+5k+1=5k(5k+1)+1 
ta có 5k(5k+1) chia hết cho 5 mà 1 ko chia hết cho 5 
=>25k^2+5k+1 ko chia hết cho 5 (đpcm)