cho tam giác ABC vuông cân tại A . Biết BC=20 cm, 4.AB=3.AC . Tính AB,AC
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
bài 4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
bài 5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
Cho tam giác ABC có BC= 1cm; AC= 7cm và độ dài cạnh AB là một số nguyên (cm).Tính độ dài AB và cho biết tam giác ABC là tam giác gì?
A. AB= 7cm và tam giác ABC vuông tại A
B. AB= 7cm và tam giác ABC cân tại A
C. AB= 7cm và tam giác ABC vuông cân tại A
D. AB= 8cm và tam giác ABC vuông tại B
bài 3: Cho tam giác ABC cân tại A có AB = AC = 5cm, BC = 8cm. Gọi H là trung điểm của BC. Tính AH
Bài 4: Cho ABC có AB= 15 cm, AC = 20 cm, BC = 25 cm. Kẻ AH vuông góc với BC tại H. a) Chứng minh: ABC vuông tại A b) Tính diện tích ABC c) Tính AH giúp mik với trình bày rõ cho mik nha
Cho tam giác ABC vuông tại A . Kẻ BI là phân giác của góc ABC (I thuộc AC), kẻ ID vuông tại BC tại
D . Tia DI cắt BA tại E .
1. Chứng minh: AB = BD .
2. Chứng minh: tam giác EBC cân.
3. Chứng minh:AD//EC.
4. Tính BE biết AB = 6 cm; AC = 8 cm .
1: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
\(\widehat{ABI}=\widehat{DBI}\)
Do đó: ΔBAI=ΔBDI
Suy ra:BA=BD
2: Xét ΔAIE vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIE}=\widehat{DIC}\)
Do đó: ΔAIE=ΔDIC
Suy ra: AE=DC
Ta có: BA+AE=BE
BD+DC=BC
mà BA=BD
và AE=DC
nên BE=BC
hay ΔBEC cân tại B
3: Xét ΔBEC có BA/AE=BD/DC
nên AD//EC
Cho tam giác abc cân tại b . Kẻ bh vuông góc ac (h thuộc ac) Cm a) tam giác abc = tam giác cbh b) cho bh = 4 cm, ac = 6 cm . Tính bc =? c) kẻ he vuông góc ab, hf vuông góc bc . Cm be= bf
Cho tam giác ABC vuông tại A , đường cao AH . Biết BC = 20 cm và AB/AC = 3/4 . Tính AB bằng 3 cách.
MN giúp mik nhe
C1. Ta có : \(\left\{{}\begin{matrix}AB^2+AC^2=400\\4AB-3AC=0\end{matrix}\right.\)
- Giair hệ phương trình ta được : AB = 12cm.
C2 .Ta có : \(\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{AB^2+AC^2}{25}=16\)
=> AB = 12cm
C3 : - Áp dụng HTL : \(\left\{{}\begin{matrix}\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}=\dfrac{BC^2}{AB^2+AC^2}\\4AB-3AC=0\end{matrix}\right.\)
- Giai hệ : AB = 12cm .
cho tam giác ABC vuông cân tại A,. Biết AB:AC=3:A chu vi tam giác ABC bằng 36 cm. Tính AB,AC,BC
Cho tam giác ABC biết BC = 52, AB = 20 và AC = 48
a, CM: Tam giác ABC cân tại A
b, Kẻ AH vuông góc với BC. Tính AH
sao chứng minh được \(\Delta ABC\)cân tại \(A\) khi đề bài cho \(AB=20\)và \(AC=48\)
\(\Delta\)cân là 2 cạnh bên của nó phải bằng nhau
đọc đề mình đã thấy nó không hợp lí rồi Nguyễn Hải Văn
mk xin lỗi nhé
Cm Tam giác ABC vuông tại A
gúp mk vs
Hình bạn tự vẽ nha
a) áp dụng định lý pytago vào \(\Delta ABC\)ta có:
\(AB^2+AC^2=BC^2\)
hay \(BC^2=20^2+48^2\)
\(\Rightarrow BC^2=400+2304\)
\(\Rightarrow BC^2=2704\)
\(\Rightarrow BC=52\) ( bằng với giả thiết đề bài cho)
\(\Rightarrow\Delta ABC\) là \(\Delta\) vuông tại \(A\)
b) ta có: \(S\Delta ABC=\frac{1}{2}.AB.AC\)
ta cũng có: \(S\Delta ABC=\frac{1}{2}.AH.BC\)
\(\Rightarrow\frac{1}{2}AB.AC=\frac{1}{2}.AH.BC\)
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=\frac{AB.AC}{BC}\)
hay \(AH=\frac{20.48}{52}\)
\(\Rightarrow AH=\frac{960}{52}\)
\(\Rightarrow AH=\frac{240}{13}\) ( vì \(AH>0\))
vậy \(AH=\frac{240}{13}\)
Cho tam giác cân ABC cân tại A. Tia phân giác của góc BAC cắt cạnh BC
tại M.
1) Chứng minh tam giác AMB = tam giác AMC.
2) a- Biết góc BAC = 500. Tính góc ABC và góc ACB.
b- Biết BC = 6 cm; AM = 4 cm. Tính độ dài AB, AC?
3) Kẻ ME vuông góc AB tại E, MF vuông góc AC tại F. Chứng minh tam giác AEF cân.
4) Kẻ EI vuông góc BC tại I. Gọi K là giao của đường thẳng EI và đường thẳng AC. Chứng
minh A là trung điểm của đoạn KF.
1: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
2:
a: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-50^0}{2}=65^0\)
b: BC=6cm nên BM=3cm
=>AB=AC=5cm
3: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
hay ΔAEF cân tại A