Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dia fic
Xem chi tiết
Bùi Minh Quân
Xem chi tiết
Tiểu Bảo Bảo
Xem chi tiết
TFBoys
Xem chi tiết
Khánh Nguyễn
30 tháng 11 2017 lúc 20:03

sky oi say oh yeah

Thiên An
Xem chi tiết
Thắng Nguyễn
3 tháng 9 2017 lúc 11:30

1.

Nhân 2 vế của BĐT với \(\left(a+b+c\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(3(a^2+b^2+c^2)(a+b)(b+c)(c+a)\ge(a+b+c)\left(Σ_{cyc}(a^2+b^2)(c+a)(c+b)\right)\)

\(\LeftrightarrowΣ_{perms}a^2b\left(a-b\right)^2\ge0\) *đúng*

Trần Thị Hiền
Xem chi tiết
Trần Thị Hiền
8 tháng 8 2017 lúc 15:59

Nguyễn Thanh Hằng,nguyen van tuan,Nguyễn Huy Tú,Ace Legona,... giúp mk vs

Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2021 lúc 22:18

Em tham khảo ở đây:

xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTN... - Hoc24

Nguyễn Việt Lâm
12 tháng 11 2021 lúc 22:25

Max thì đơn giản thôi em:

Do \(0\le m;n\le1\Rightarrow0< 2-mn\le2\)

\(\Rightarrow M=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{mn+m+n+1}\le\dfrac{2\left(m+n+1\right)}{mn+m+n+1}\le\dfrac{2\left(m+n+1\right)}{m+n+1}=2\)

\(M_{max}=2\) khi \(mn=0\)

Le Thi Khanh Huyen
Xem chi tiết
Ngọc
5 tháng 9 2016 lúc 20:30

Câu 2: Ta có: a , b ,c là các số thực dương ( bài cho )

=> Tồn tại 3 số thực dương x , y, z thỏa mãn : \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{x}{z}\)

=> \(\frac{a-1}{c}+\frac{c-1}{b}+\frac{b-1}{a}=\frac{x^3}{xyz}+\frac{y^3}{xyz}+\frac{z^3}{xyz}=\frac{x^3+y^3+z^3}{xyz}\)

<=>\(\frac{x^3+y^3+z^3}{xyz}\ge0=\frac{x^2y+y^2z+z^2x}{xyz}\)( Bước này tách 0 ra cho cùng mẫu )

<=> \(x^3+y^3+z^3\ge x^2y+y^2z+z^2x\)

Áp dụng BĐT TB cộng và TB nhân => \(x^3+y^3+z^3\ge3x^2y\)

Làm 2 BĐT tương tự rồi cộng vào => Đpcm 

Lê Nguyên Hạo
5 tháng 9 2016 lúc 19:45

câu hỏi hay, éo biết làm =)

Thảo
5 tháng 9 2016 lúc 20:04

wow! 

mik mới bị trừ 280 xong, các bn giúp mik nha

Cảm ơn trc

Trang Nguyễn
Xem chi tiết
👁💧👄💧👁
4 tháng 2 2021 lúc 22:00

\(f\left(-1\right)=2\Rightarrow-a+b-c+d=2\\ f\left(0\right)=1\Rightarrow d=1\\ f\left(1\right)=7\Rightarrow a+b+c+d=7\\ f\left(\dfrac{1}{2}\right)=3\Rightarrow\dfrac{1}{8}a+\dfrac{1}{4}b+\dfrac{1}{2}c+d=3\)

\(d=1\Rightarrow-a+b-c=1;a+b+c=6\\ \Rightarrow2b=7\\ \Rightarrow b=\dfrac{7}{2}\\ \Rightarrow\dfrac{1}{8}a+\dfrac{7}{8}+\dfrac{1}{2}c=2\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{4}a+\dfrac{7}{4}+c\right)=2\\ \Rightarrow\dfrac{1}{4}a+\dfrac{7}{4}+c=4\\ \Rightarrow a+7+4c=16\\ \Rightarrow a+4c=9;a+c=6-\dfrac{7}{2}=\dfrac{5}{2}\\ \Rightarrow3c=\dfrac{13}{2}\Rightarrow c=\dfrac{13}{6}\\ \Rightarrow a=\dfrac{5}{2}-\dfrac{13}{6}=\dfrac{1}{3}\)

Vậy \(\left(a;b;c;d\right)=\left(\dfrac{1}{3};\dfrac{7}{2};\dfrac{13}{6};1\right)\)