1. Cho a,b,c > 0. CmR: \(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}\le3.\dfrac{a^2+b^2+c^2}{a+b+c}\)
2. Cho \(f\left(x\right)=ax^2+bx+c\) biết rằng: \(\hept{\begin{cases}\left|f\left(0\right)\right|\le1\\\left|f\left(-1\right)\right|\le1\\\left|f\left(1\right)\right|\le1\end{cases}}\)
CmR: a) \(\left|a\right|+\left|b\right|+\left|c\right|\le3\)
b) \(\left|f\left(x\right)\right|\le\dfrac{5}{4}\forall x\in\left[-1;1\right]\)
cho đa thức f(x)=ax2+bx+c với \(a,b\ge0\) thỏa mãn điều kiện\(\left|f\left(x\right)\right|\le1,\forall x:-1\le x\le1\) . Tìm GTLN của A=a2+b2
Cho \(\left|a\right|+\left|b\right|+\left|c\right|>17\)
Chứng minh rằng hệ sau có nghiệm :\(\hept{\begin{cases}\left|ax^2+bx+c\right|>1\\0\le x\le1\end{cases}}\)
Cho x,y,z>2 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) CMR : \(\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)
Cho x, y, z là các số thực không âm thỏa mãn: \(0\le x\le y\le z\le1\)
Tìm giá trị lớn nhất của biểu thức: \(Q=x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(1-z\right)\)
cho a,b,c là các số thực dương thỏa mãn abc=1.CMR
\(\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right)\le1\)
Cho a,b,c,d thỏa mãn \(0\le a,b,c,d\le1\). Tìm GTLN của
\(P=\sqrt[3]{abcd}+\sqrt[3]{\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)}\)
Cho các số thực a,b,c thỏa mãn \(0\le a,b,c\le1\)và \(a+b+c\ge2\).CMR:
\(ab\left(a+1\right)+bc\left(b+1\right)+ca\left(c+1\right)\ge2\)
Cho x,y,z>2 tm: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). CMR: \(\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)