Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Ngọc Bảo Trân
Xem chi tiết
Ninh Thị Trà My
9 tháng 11 2023 lúc 22:44

\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)

Trương Việt Hoàng
Xem chi tiết
Trương Việt Hoàng
20 tháng 10 2016 lúc 15:12

à quên không vẽ hình cũng được

May Mắn
Xem chi tiết
Tử-Thần /
13 tháng 12 2021 lúc 20:05

a) xét TG ABI và TG ẠCI

ta có AB=AC(gt)

góc BAI=góc IAC (gt)

Ai chung 

vậy TG ABI=TG ACI(c-g-c)

Thanh Hoàng Thanh
13 tháng 12 2021 lúc 20:13

a) Xét tam giác AIB và tam giác AIC có:

+ AI chung.

+ AB = AC (gt).

+ ^BAI = ^CAI (AI là phân giác ^BAC).

=> Tam giác AIB = Tam giác AIC (c - g - c).

b) Xét tam giác ABc có: AB = AC (gt).

=> Tam giác ABC cân tại A.

Mà AI là phân giác ^BAC (gt).

=> AI là đường cao (Tính chất các đường trong tam giác cân).

=> AI vuông góc BC (đpcm).

c) Xét tam giác ABC cân tại A có:

^BAC = 60 độ (gt).

=> Tam giác ABc đều.

=> Góc ABC = 60 độ (Tính chất tam giác đều).

 

 

Hung Nguyên kim
13 tháng 12 2021 lúc 20:20

bạn tự vẽ hình và ghi giả thiết kết luận nhé:

AB=AC(gt)

A1=A2(vì AI là phân giác của ^BAC)

AI cạnh chung

suy ra tam giác AIB=AIC(c-g-c)

b, Vì AI là phân giác của ^BAC và AI cắt BC(gt) suy ra AI vuông góc với BC

c, vì AI là phân giác của BAC suy ra BAI=60/2=30

vì I vuông góc với BC suy ra :^B=180-(30+90)=60 SUY ra ^B=60

Phương Thảo
Xem chi tiết
Trịnh Việt Dũng
15 tháng 6 2022 lúc 20:29

chịu hoi =))))))

 

Trịnh Việt Dũng
15 tháng 6 2022 lúc 20:29

em mới học lớp 7 hà

năm nay lên lớp 8 =)))))

Nguyễn Thảo My
14 tháng 1 2023 lúc 21:25

1)Ta có: \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)

\(\Leftrightarrow8=\dfrac{1}{2}\times4\times5\times sinA\)

\(\Leftrightarrow\sin A=0,8\)

Lại có: \(\left(\sin A\right)^2+\left(\cos A\right)^2=1\Leftrightarrow\cos A=0,6.\)

Áp dụng định lí hàm số cosin:

\(BC^2=AB^2+AC^2-2AB\times AC\times\cos A\)

\(\Leftrightarrow BC^2=4^2+5^2-2\times4\times5\times0,6=17\)

\(\Leftrightarrow BC=\sqrt{17}.\)

2) Trong \(\Delta ABC\) có: \(g\text{ó}cA+g\text{óc}B+g\text{óc}C=180^o\)

=> BAC=75o.

Áp dụng định lí hàm số sin:

\(\dfrac{AB}{\sin C}=\dfrac{BC}{\sin A}\Leftrightarrow\dfrac{3}{\sin45^o}=\dfrac{BC}{\sin75^o}\)

\(\Leftrightarrow BC=\dfrac{3+3\sqrt{3}}{2}\).

 

 

Trương Việt Hoàng
Xem chi tiết
Huy Dz
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 4 2021 lúc 23:02

a) Xét ΔABD vuông tại B và ΔAED vuông tại E có 

AD chung

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))

Do đó: ΔABD=ΔAED(cạnh huyền-góc nhọn)

Nguyễn Lê Phước Thịnh
30 tháng 4 2021 lúc 23:05

b) Ta có: AD là tia phân giác của \(\widehat{BAC}\)(gt)

nên \(\widehat{DAC}=\dfrac{\widehat{BAC}}{2}=\dfrac{60^0}{2}=30^0\)(1)

Ta có: ΔABC vuông tại B(gt)

nên \(\widehat{C}+\widehat{A}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{DCA}+60^0=90^0\)

hay \(\widehat{DCA}=30^0\)(2)

Từ (1) và (2) suy ra \(\widehat{DAC}=\widehat{DCA}\)

Xét ΔDCA có \(\widehat{DAC}=\widehat{DCA}\)(cmt)

nên ΔDCA cân tại D(Định lí đảo của tam giác cân)

Suy ra: DA=DC(hai cạnh bên)

Xét ΔAED vuông tại E và ΔCED vuông tại E có 

DA=DC(cmt)

DE chung

Do đó: ΔAED=ΔCED(cạnh huyền-cạnh góc vuông)

Suy ra: EA=EC(hai cạnh tương ứng)

Nguyễn Lê Phước Thịnh
30 tháng 4 2021 lúc 23:05

c) Ta có: ΔABD=ΔAED(cmt)

nên BD=ED(Hai cạnh tương ứng)

mà ED<DC(ΔDEC vuông tại E có DC là cạnh huyền nên DC là cạnh lớn nhất)

nên DB<DC(Đpcm)

nam trần
Xem chi tiết
Trần Ngọc Hà My
31 tháng 8 2016 lúc 21:57

khó ghê

NinNin
Xem chi tiết
dao xuan tung
Xem chi tiết
๛Ňɠũ Vị Čáէツ
28 tháng 9 2019 lúc 22:38

Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)

 Trong tam giác vuông BAH có \(\widehat{B}=60^o\)\(\widehat{BHA}=90^o\)

\(\Rightarrow\widehat{BAH}=30^o\)

   Do AB//HE

=> \(\widehat{BAH}=\widehat{AHE}=30^o\)

Hoàng hôn  ( Cool Team )
29 tháng 9 2019 lúc 10:04

Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)

 Trong tam giác vuông BAH có \widehat{B}=60^oB=60o\widehat{BHA}=90^oBHA=90o

\Rightarrow\widehat{BAH}=30^o⇒BAH=30o

   Do AB//HE

=> \widehat{BAH}=\widehat{AHE}=30^oBAH=AHE=30o

Lê Hương Giang
Xem chi tiết