cmr (a^2+1)(b^2)(c^2+1)>=8abc
cmr (a^2+1)(b^2)(c^2+1)>=8abc
Áp dụng BĐT AM-GM ta có:
\(\left\{\begin{matrix}a^2+1\ge2\sqrt{a^2}=2a\\b^2+1\ge2\sqrt{b^2}=2b\\c^2+1\ge2\sqrt{c^2}=2c\end{matrix}\right.\)
Nhân theo vế 3 BĐT trên ta được:
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a\cdot2b\cdot2a=8abc\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a+b+c=1.cmr
a)a.b2 .c3 < 1:432
b) b+c > 16abc
c) (1-a)(1-b)(1-c) > 8abc
d)(a+b)(b+c)(a+c)> 8abc
e) a2 (1+b2)+b2(1+c2)+c2(1+a2) > 6abc
Cho a+b+c=1.cmr
a)a.b2 .c3 < 1:432
b) b+c > 16abc
c) (1-a)(1-b)(1-c) > 8abc
d)(a+b)(b+c)(a+c)> 8abc
e) a2 (1+b2)+b2(1+c2)+c2(1+a2) > 6abc
Với a,b,c là các số thực dương thỏa mãn ab+bc+ca=1. CMR
\(P=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\ge2\)
\(P=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\)
\(=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}}\)
\(=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}}\)
\(=a^2+b^2+c^2+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Ta có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca=1\left(1\right)\)
Áp dụng BĐT Cô-si ta có:
\(a+b\ge2\sqrt{ab}\)
Tương tự:\(b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(2\right)\)
Từ (1) và (2) suy ra:
\(P\ge1+\frac{8abc}{8abc}=2\left(đpcm\right)\)
Dấu '=' xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
:))
ở phần cô si phần cuối là bn sai r
vì >= nhưng ở dưới mẫu nên bị đảo lại thành =< nên bn lm như thế k đúng
đay là link giải https://diendan.hocmai.vn/threads/bdt-a-2-b-2-c-2-dfrac-8abc-a-b-b-c-c-a-geq-2.341255/
Em không chắc đâu nha....Em mới học BĐT nên còn khá ngu về phần này,xin được chỉ giáo thêm ạ! :D
Biển đổi P trở thành\(P=a^2+b^2+c^2+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) (như a/c Con Chim 7 Màu gì đó)
\(=\left(\frac{a^2+b^2+c^2}{ab+bc+ca}-1\right)+\left(\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)-1+2\)
\(=\frac{2\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left(ab+bc+ca\right)}-\frac{a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+2\)
\(=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2\left(ab+bc+ca\right)}-\frac{a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+2\)
\(=\Sigma\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\left(a-b\right)^2+2\)
Để cho gọn,ta đặt \(P=S_c\left(a-b\right)^2+S_b\left(c-a\right)^2+S_a\left(b-c\right)^2+2\)
Với \(S_c=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\) (như trên)
\(S_a=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{a}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\)
\(S_b=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{b}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\)
Ta đi chứng minh: \(S_a;S_b;S_c\ge0\).Thật vậy,xét Sc:
Ta chứng minh \(S_c=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\ge0\)
\(\Leftrightarrow\frac{1}{2}\ge\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2c\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2c\left(ab+bc+ca\right)\) (biến đổi làm cho 2 vế đồng bậc)
Chuyển vế qua ta cần chứng minh \(ab\left(a+b\right)+bc\left(b-c\right)+ca\left(a-c\right)\ge0\) (1)
Giả sử \(a\ge b\ge c\Rightarrow\)BĐT (1) đúng nên \(S_c\ge0\)
Do tính đối xứng của P nên ta cũng có \(S_b;S_c\ge0\)
Từ đây suy ra \(=\Sigma\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\left(a-b\right)^2+2\ge2\left(đpcm\right)\)
Câu 1:
a, Cmr \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
b, Cho đường thẳng y=(m-2)x+2 (d). Cmr đường thẳng (d) luôn đi qua 1 điểm cố định với mọi giá trị của m
Câu 2 : Gọi a,b,c là độ dài các cạnh của 1 tam giác biết : (a+b)(b+c)(c+a)=8abc. Cmr tam giác đó là tam giác đều
Có anh bảo e bình phương nên e cũng bình phương thử xem ạ:3 ( Hình như cái này là BĐT Mincốpski )
\(BĐT\Leftrightarrow a^2+b^2+c^2+d^2+\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+b\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2ac+2bd\)
\(\Leftrightarrow4\left(a^2+b^2\right)\left(c^2+d^2\right)\ge4a^2c^2+8abcd+4b^2d^2\)
\(\Leftrightarrow4a^2d^2-8abcd+4b^2c^2\ge0\)
Đến đây bí rồi:((((((
zZz Cool Kid zZz bình phương sai huống hồ không bí:))
\(\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2=a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\) nhé! Thiếu số 2 phía trước kìa
tth_new Viết thiếu thôi mà bác"((( Làm gì mà căng:(
Cho a+b+c=1 cmr (1-a)(1-b)(1-c)>=8abc
Câu 1:
a, Cmr \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
b, Cho đường thẳng y=(m-2)x+2 (d). Cmr đường thẳng (d) luôn đi qua 1 điểm cố định với mọi giá trị của m
Câu 2 : Gọi a,b,c là độ dài các cạnh của 1 tam giác biết : (a+b)(b+c)(c+a)=8abc. Cmr tam giác đó là tam giác đều
Câu 1:
a/ Bình phương 2 vế:
\(a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2ac+2bd\)
\(\Leftrightarrow\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge ac+bd\)
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow a^2d^2-2ad.bc+b^2c^2\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(ad=bc\)
b/ Giả sử d đi qua điểm cố định \(\left(x_0;y_0\right)\)
\(\Rightarrow y_0=\left(m-2\right)x_0+2\) \(\forall m\)
\(\Rightarrow mx_0-\left(2x_0+y_0-2\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_0=0\\2x_0+y_0-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\)
Câu 2:
Áp dụng BĐT Cauchy:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\) \(\Rightarrow a=b=c\)
\(\Rightarrow\) Tam giác đã cho đều
Bài 1 : Cho a,b,c,d là các số nguyên thỏa mãn : a + b = c + d
CMR : M = \(a^2+b^2+c^2+d^2\) luôn là tổng của 3 SCP |
Bài 2 : Cho a , b , c là độ dài 3 cạnh 1 tam giác thỏa mãn
(a+b)(b+c)(c+a) = 8abc
Mong mọi người giúp mình , mình cần rất gấp .
Câu 2 (Bổ Sung) : Chứng minh tam giác đã cho là tam giác đều
(Nghi binh 28/09)
Đang có hứng:
Bài 1: CMR \(\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\forall a,b,c\ge0\)
Bài 2: CMR \(\frac{4\left(a^3+b^3+c^3\right)}{a^2+b^2+c^2}+\frac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^2}\ge4\left(a+b+c\right)\)\(\forall a,b,c\ge0\)
Bài 1 thì dễ rồi, bài 2 mình mới tìm được.
Não đặc-.-
Nếu sửa đề ntn thì mk nghĩ không ngược dấu mới làm được nek
Bài 1: CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) với a,b,c dương
Bài làm:
Ta có: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\ge\frac{a^2+b^2+c^2}{\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}}-\frac{8abc}{2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}}\)
\(=\frac{a^2+b^2+c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}-\frac{8abc}{8abc}\)
\(=1-1=0\)
Dấu "=" xảy ra khi: \(a=b=c\)
Vãi bạn, mình đang đưa các bài tập về các bđt ngược chiều nên đề như thế là đúng r
bài 1 là AM-GM ở vt xong biến đổi tương đương phải không ạ ?