Hình bình hành ABCD có 4 đỉnh lần lượt nằm trên các cạnh tứ giác EFGH, trong đó có 2 điểm là trung điểm của 2 cạnh tứ giác. Chứng minh diện tích hình bình hành ABCD = \(\frac{1}{2}\)diện tích tứ giác EFGH
5) Trên cạnh AB và CD của hình bình hành ABCD lần lượt lấy hai điểm M và N sao cho AM = CN, P là điểm trên AD, các đường thẳng MN, BP, CP chia hình bình hành thành ba tam giác và ba tứ giác. Chứng minh rằng trong đó diện tích một tam giác bằng tổng diện tích hai tam giác còn lại, và diện tích một tứ giác bằng tổng diện tích hai tứ giác còn lại.
Cho hình bình hành ABCD . Chị có cạnh của hình bình hành lấy các trung điểm M , N , P , Q . Nối các điểm đó được hình tứ giác MNPQ . Tìm tỉ số phần trăm của diện tích hình tứ giác MNPQ và diện tích hình bình hành ABCD
Cạnh AB = DC 3,3 cm . Cạnh AD = BC 2,6 cm
S hình bình hành ABCD là : 2,6 x 3,3 = 8,58 cm\(^2\)
QM = PN = 2,3 cm , MN = QP = 1,8 cm
Diện tích các phần ko tô màu là : [1,35 x 2,3 + 1,8 x 1,35 + 1,35 x 1,65 + 1,65 x 1,35] : 2 = 4,995 cm\(^2\)
Diện tích hình tứ giác là : 8,58 - 4,995 = 3,585 cm\(^2\)
Tỉ số % của diện tích hình tứ giác MNPQ và diện tích hình bình hành ABCD là :
3,585 : 8,58 x 100 = 41,873%
cho tứ giác ABCD. Diện tích tứ giác ABCD bằng 56 cm2 gaoij E,F,G,H lần lượt là trung điểm các cạnh AB,BC,CD,DA
Biết EFGH là hình binh hành
a) tính diện tích tứ giác EFGH
Cho tứ giác ABCD có E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. a) Chứng minh tứ giác EFGH là hình bình hành. b) Cho AC= 6cm; BD=8cm. Tính độ dài các cạnh của hình bình hành EFGH. 2 Giải giúp mình với
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của BC
Do đó: EF là đường trung bình
=>EF//AC và EF=AC/2(1)
Xét ΔCDA có
G là trung điểm của CD
H là trung điểm của DA
Do đó: GH là đường trung bình
=>GH//AC và GH=AC/2(2)
Từ (1) và (2) suy ra EF//GH và EF=GH
hay EFGH là hình bình hành
b: EF=GH=AC/2=3(cm)
FG=EH=BD/2=4(cm)
cho tứ giác ABCD gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA.
a) chứng minh tứ giác EFGH là hình bình hành
b) Gọi O là trung điểm EG, chứng minh F đối xứng H qua O
c) các đường chéo AC, BD, của tứ giác ABCD có điều kiện tứ giác EFGH là hình chữ nhật
a: Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của DC
Do đó: FG là đường trung bình của ΔBCD
Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra EH//GF và EH=GF
hay EHGF là hình bình hành
Cho hình bình hành ABCD. Gọi E,F,G,K lần lượt là trung điểm của cạnh AB,BC,CD,DA. Tính diện tích đa giác là phần chung của tứ giác AGCF,BGDK,CEAK,DEBF theo diện tích của hình bình hành ABCD. ( Theo ứng dụng của tỉ số diện tích trong tam giác)
Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Gọi I và J lần lượt là trung điểm của AC và BD.
a) Chứng minh tứ giác EFGH là hình bình hành.
b) Chừng minh tứ giác IFJH là hình bình hành.
Bạn nào biết làm thì giúp Ngọc nhé! Mình cảm ơn nhiều!
Cho hình bình hành ABCD có AB = 8 cm,AD = 4 cm.Gọi M, N lần lượt là trung điểm của AB và CD.a/ Chứng minh tứ giác AMCN là hình bình hành. Hỏi tứ giác AMND là hình gì?
b. Gọi I là giao điểm của AN và DM , K là giao điểm của BN và CM . Tứ giác MINK là hình gì
c/ Chứng minh IK\\CD
d/ (Lớp 8A làm thêm câu này).Hình bình hành ABCD cần thêm điều kiện gì thì tứ giác MINK là hình vuông? Khi đó ,diện tích của MINK bằng bao nhiêu?