Cho tam giác ABC có diện tích 81 cm2. Qua điểm M nằm trong tam giác, vẽ các đường thẳng song song với các cạnh của tam giác, tạo thành 3 hình bình hành và ba tam giác nhỏ. Biết diện tích 2 trong 3 tam giác nhỏ bằng 4 và 16 cm2. Tính diện tích tam giác thứ 3.
Cho tứ giác lồi ABCD. GIẢ SỬ E LÀ ĐIỂM ĐỂ TỨ GIÁC ABDE LÀ HÌNH BÌNH HÀNH. CHỨNG MINH TỨ GIÁC ABCD VÀ TAM GIÁC ACE CÓ DIÊN TÍCH BẰNG NHAU
cho tứ giác ABCD nội tiếp đường tròn tâm O. biết phân giác trong của \(\widehat{BAD}\) và \(\widehat{ABC}\) cắt nhau tại E trên cạnh CD.
1. CM: AD+BC=CD
2. cho \(\dfrac{CD}{CB}=k\) (k>1). tính tỉ số diện tích ΔADE và ΔBCE
Hình thang ABCD có 2 đáy AB, CD với AB = 5. CD. P/g góc ABC cắt AD ở E và EA = 3ED. BE chia hình thang thành 2 tứ giác. Tính tỉ số diện tích 2 tam giác đó
Cho tam giác ABC có AB ACGH.
1. Chứng minh BH = EC .
2. Vẽ hình bình hành 4EFH . Chứng minh rằng 4F vuông góc với BC.
3. Gọi O là giao điểm các đường trung trực của tam giác ABC, M và N lần lượt là trung điểm của
EH và BC, biết OH = OE . Chứng minh tứ giác AMON là hình bình hành và tính góc BỌC.
Cho đường tròn (O) nội tiếp tam giác ABC với các tiếp điểm là D; E; F lần lượt thuộc các cạnh BC; CA; AB. Chứng minh rằng tích các khoảng cách hạ từ một điểm P bất kì thuộc đường tròn (O) đến các cạnh của tam giác ABC bằng tích các khoảng cách từ điểm P đến các cạnh của tam giác DEF
Cho tam giác ABC, trên cạnh AB,BC lần lượt lấy E,F di động theo thứ tự trên. Gọi D là giao điểm của AF và CE . CMR S(BEF)/S(ABC)=S(DEF)/S(DAC)
Cho đường tròn (O;R), điểm A ở ngoài đường tròn có OA=2R. Từ A kẻ hai tiếp tuyến AB, AC (B, C là hai tiếp điểm)
a. Chứng minh OA ⊥ BC
b. OA cắt đường tròn (O) tại D. Chứng minh tứ giác BOCD là hình thoi
c. Tính AB và diện tích tam giác ABC theo R
d. Chứng minh D là tâm đường tròn nội tiếp tam giác ABC và tính bán kính của của đường tròn đó theo R
Cho tam giác ABC. Lấy điểm D cố định trên BC. Đường thẳng d di động song song với BC lần lượt cắt AB,AC tại điểm M,N. C/m diện tích tam giác DNM luôn < hoặc = diện tích tam giác ABC. Dấu bằng xảy ra khi nào?