Phân tích đa thức sau thành nhân tử:
\(12a^2-2b^2+5ab=0\)
Phân tích đa thức thành nhân tử: 5a^3-10a^2b+5ab^2-10a+10b
phân tích đa thức sau thành nhân tử
2a^2+5ab-2b^2
x^5+x^4+1
x^5+x^4+1=(x^5+x^4+1)-(x^3+x^2+x)+(x^2+x+1)
=x^3.(x^2+x+1) - x(x^2+x+1)+(x^2+x+1)
=(x^2+x+1)(x^3-x+1)
\(2a^2+5ab-2b^2\)
\(=2a^2+ab+4ab-2b^2\)
\(=a\left(2a+b\right)+2b\left(2a+b\right)\)
\(=\left(2a+b\right)\left(a+2b\right)\)
vì sao lại x^5+x^4+1=(x^5+x^4+1)-(x^3+x^2+x)+(x^2+x+1)
1:phân tích các đa thức thành nhân tử
a) 10x^2y^3+5y^2y^4
b) 4a^2b+8a^3+12a^2b^4
c) 6x(x+y)^2+3x^2y(x+y)
2: phân tích đa thức thành nhân tử
a) 9x^2-12xy+4y^2
b) 1/4x^2-1,44y^2
c) 1/27a^3+0,064b^3
3) tìm x biết
a) x^3-4x^2+4x=0 b) x^3-25x=0 c) x^4-27/125x=0
phân tích đa thức thành nhân tử :
a) 2a2+5ab-3b2-7b-2
b)2x2-7xy+x+3y2-3y
mong a chị chỉ giúp e ạ
b: \(2x^2-7xy+3y^2+x-3y\)
\(=2x^2-6xy-xy+3y^2+x-3y\)
\(=2x\left(x-3y\right)-y\left(x-3y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y+1\right)\)
Lời giải:
a.
Đặt $2a^2+5ab-3b^2-7b-2=(a+mb+n)(2a+pb+k)$ với $m,n,p,k$ nguyên
$\Leftrightarrow 2a^2+5ab-3b^2-7b-2=2a^2+ab(2m+p)+mpb^2+a(k+2n)+b(km+np)+kn$
Đồng nhất hệ số:
\(\left\{\begin{matrix} 2m+p=5\\ mp=-3\\ k+2n=0\\ km+np=-7\\ kn=-2\end{matrix}\right.\)
Giải hpt này ta thu được $m=3; n=1; p=-1; k=-2$
Vậy $2a^2+5ab-3b^2-7b-2=(a+3b+1)(2a-b-2)$
b. Đa thức không phân tích được thành nhân tử
phân tích đa thức thành nhân tử :
a) 2a2+5ab-3b2-7b-2
b)2x2-7xy+x+3y2-3y
mong a chị chỉ giúp e ạ
b: Ta có: \(2x^2-7xy+3y^2+x-3y\)
\(=2x^2-6xy-xy+3y^2+x-3y\)
\(=2x\left(x-3y\right)-y\left(x-3y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y+1\right)\)
Hãy hoàn thành biến đổi sau vào vở để phân tích đa thức thành nhân tử:
\({a^2} + ab + 2a + 2b = \left( {{a^2} + ab} \right) + \left( {2a + 2b} \right) = ...\)
Em có thể biến đổi theo cách khác để phân tích đa thức trên thành nhân tử không?
`a^2 + ab + 2a + 2b = a(a+2) + b(a+2) = (a+b)(a+2)`
Phân tích đa thức sau thành nhân tử:
1)a^2 - b^2 - 12a + 12b.
2)4x^2 - 4x + 1 - 25y^2.
3)x^2 - 3x -10.
\(1,a^2-b^2-12a+12b=\left(a-b\right)\left(a+b\right)-12\left(a-b\right)=\left(a-b\right)\left(a+b-12\right)\\ 2,4x^2-4x+1-25y^2=\left(2x-1\right)^2-\left(5y\right)^2=\left(2x-5y-1\right)\left(2x+5y-1\right)\\ c,x^2-3x-10=\left(x^2-5x\right)+\left(2x-10\right)=x\left(x-5\right)+2\left(x-5\right)=\left(x-5\right)\left(x+2\right)\)
Phân tích các đa thức sau thành nhân tử :
a. a^2-8a+15
b.3x^2-10x-8
c.-6x^3+18x^2+60x
d.2a^2-5ab+2b^2
e.xy^2-xz^2+yz^2-yx^+zx^2-yz^2
\(a^2-8a+15\)
\(=\left(a^2-2.4a+4^2\right)-1^2\)
\(=\left(a-4\right)^2-1^2\)
\(=\left(a-4-1\right)\left(a-4+1\right)\)
\(=\left(a-3\right).\left(a-5\right)\)
\(a^2-8a+15\)
\(=a^2-2.a.4+16-1\)
\(=\left(a-4\right)^2-1\)
\(=\left(a-4-1\right)\left(a-4+1\right)\)
\(=\left(a-5\right)\left(a-3\right)\)
\(3x^2-10x-8\)
\(=3x^2-12x+2x-8\)
\(=3x\left(x-4\right)+2\left(x-4\right)\)
\(=\left(3x+2\right)\left(x-4\right)\)
\(-6x^3+18x^2+60x\)
\(=\)\(-6x^3+30x^2-12x^2+60x\)
\(=-6x^2\left(x-5\right)-12x\left(x-5\right)\)
\(=\)\(\left(-6x^2-12x\right)\left(x-5\right)\)
\(=-6x\left(x+2\right)\left(x-5\right)\)
phân tích đa thức sau thành nhân tử ( a + b )2 - ( a - 2b )2
\(\left(a+b\right)^2-\left(a-2b\right)^2\)
\(=\left[\left(a+b\right)+\left(a-2b\right)\right]\left[\left(a+b\right)-\left(a-2b\right)\right]\)
\(=\left(a+b+a-2b\right)\left(a+b-a+2b\right)\)
\(=\left(2a-b\right).3b\)
\(=3b.\left(2a-b\right)\)