Chứng tỏ rằng 10^45+8 chia hết cho 2,3 và 9
Chứng tỏ rằng:
a) Số 10^10+8 chia hết cho 2,3 và 9
b) Số 10^100+5 chia hết cho 3 và 5
c) Số 10^50+44 chia hết cho 2 và 9
bạn nghe cô giáo giảng là dc mà :D
nha bạn :):)))
Chứng tỏ rằng:8^10-8^8-8^9 chia hết cho 55
7^6+7^5-7^4 chia hết cho11
81^7-27^9-9^13 chia hết cho 45
109+10^8+10^7 chia hết cho 555
a, 810 - 89 - 88 = 88(82 - 8 - 1) = 88.55 chia hết cho 55
b, 76 + 75 - 74 = 74(72 + 7 - 1) = 74.55 = 74.5.11 chia hết cho 11
c, 817 - 279 - 913 = 328 - 327 - 326 = 324(34 - 33 - 32) = 324.45 chia hết cho 45
d, 109 + 108 + 107 = 106(103 + 102 + 10) = 106.1110 = 106.2.555 chia hết cho 555
tại sao lại là (82 - 8 - 1) có ai giải thích hộ mình ko
Chứng tỏ rằng
a) 8^10-8^9-8^8 chia hết cho 55
b) 81^7-27^9-9^13 chia hết cho 45
c) 7^6 +7^5-7^4 chia hết cho 11
d) 10^9+10^8+10^7 chia hết cho 555
a, Đặt A = 810 - 89 - 88 = 88.82 - 88.81 - 88.1 = 88.(82 - 81 -1) = 88.55
Vì 55 chia hết cho 55 nên 88 chia hết cho 55 hay A chia hết cho 55.
b, Đặt B = 76 + 75 - 74 = 74.72 + 74.71 + 74.1 = 74.(72 + 71 - 1) = 74.55
Vì 55 chia hết cho 55 nên 74.55 chia hết cho 55 hay B chia hết cho 55.
c, Đặt C = 817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 ( Đến dây thì tương tự như phần a bạn nhé)
d, Phần này cũng tương tự phần a.
Giải:
a) \(8^{10}-8^9-8^8=8^8.\left(8^2-8-1\right)=8^8.55⋮5\)
\(\Rightarrow8^{10}-8^9-8^8⋮55\left(đpcm\right)\)
b) \(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{24}\left(3^4-3^3-3^2\right)=3^{24}.45⋮5\)
\(\Rightarrow81^7-27^9-9^{13}⋮45\left(đpcm\right)\)
c) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮11\left(55⋮11\right)\)
\(\Rightarrow7^6+7^5-7^4⋮11\left(đpcm\right)\)
d) \(10^9+10^8+10^7=10^6.\left(10^3+10^2+10\right)=10^7.1110⋮555\left(1110⋮555\right)\)
\(\Rightarrow10^9+10^8+10^7⋮555\left(đpcm\right)\)
Chứng tỏ rằng
a) 8^10-8^9-8^8 chia hết cho 55
b) 81^7-27^9-9^13 chia hết cho 45
c) 7^6 +7^5-7^4 chia hết cho 11
d) 10^9+10^8+10^7 chia hết cho 555
Câu hỏi của Asari Tinh Nghịch - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài làm của bạn ST nhé!
chứng tỏ rằng :
a) 10^9+10^8+10^7 chia hết cho 555
B)81^7 - 27^9 - 9^13 chia hết cho 45
1. chứng tỏ rằng
a. 81 mũ 7 - 27 mũ 9 - 9 mũ 13 chia hết cho 45
b. 10 mũ 9 + 10 mũ 8 + 10 mũ 7 chia hết cho 222
\(81^7 - 27^9 - 9^{13}\\ = (3^4)^7 - (3^3)^9 - (3^2)^{13} \\ = 3^{4.7} - 3^{3.9} - 3^{2.13} \\ = 3^{28} - 3^{27} - 3^{26} \\ = 3^{24}(3^4-3^3-3^2) \\ = 3^{24}(81-27-9) \\ =3^{24} . 45 \vdots 45 \)
\(10^9+10^8+10^7\\=10^6(10^3+10^2+10)\\=10^6(1000+100+10)\\=10^6 . 1110 \\ =10^6 . 5 .222\vdots 222\)
Chứng tỏ rằng :
a) 109 + 108 + 107 chia hết cho 555
b) 817 - 279 - 913 chia hết cho 45
chứng tỏ rằng : a=10! + 1.3.5...9 chia hết cho 5
chứng tỏ rằng : b=10! + 1.3.5...9 + 2009 chia hết cho 2
chứng tỏ rằng : c= 17^17 + 13^13 chia hết cho 2 và 5
chứng tỏ rằng : d= 17^17 - 13^13 chia hết cho 2 nhưng ko chia hết cho 5
Bài 1: Chứng tỏ rằng 10^2022 + 8 chia hết cho 3 và 9
Xét biểu thức \(P=10^0+10^1+10^2+...+10^{2021}\)
\(\Rightarrow10P=10^1+10^2+10^3+...+10^{2022}\)
\(\Rightarrow9P=10^{2022}-1\)
\(\Rightarrow10^{2022}+8=9P+9⋮9\)
Vậy ta có đpcm.
Cách 2: Ta thấy \(10=9+1\) nên
\(10^{2022}=\left(9+1\right)^{2022}\) \(=\left(9+1\right)\left(9+1\right)...\left(9+1\right)\) (2022 lần)
\(=9Q+1\) (Q là 1 biểu thức).
Vậy \(10^{2022}-1=9Q⋮9\), cũng suy ra đpcm.
Đặt A = 10²⁰⁰² + 8
= 1000...000 + 8 (2002 chữ số 0)
Tổng các chữ số của A:
1 + 0 + 0 + ... + 0 + 8 (2002 chữ số 0)
= 9
Ta có:
9 ⋮ 9
9 ⋮ 3
Vậy A ⋮ 9 và A ⋮ 3