Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Uyên
Xem chi tiết
Duy Nam
28 tháng 2 2022 lúc 7:59

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

ILoveMath đã xóa
Rhider
28 tháng 2 2022 lúc 8:06

\(S\) là điểm chính giữa cung \(\widehat{AB}\)

\(\Rightarrow\widehat{SA}=\widehat{SB}\left(1\right)\)

\(\widehat{DEB}=\dfrac{1}{2}\left(sđ\widehat{DCB}+sd\widehat{AS}\right)\)( tính chất có đỉnh ở bên trong đường tròn ) \(\left(2\right)\)

\(\widehat{DCS}=\dfrac{1}{2}sđ\widehat{DAS}\) ( tính chất góc nội tiếp ) hay \(\widehat{DCS}=\dfrac{1}{2}\left(sđ\widehat{DA}+sd\widehat{SA}\right)\left(3\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{DEB}+\widehat{DCS}=\dfrac{1}{2}\left(sđ\widehat{DCB}+sd\widehat{AS}+sd\widehat{DA}+sđ\widehat{SA}\right)\left(4\right)\)

Từ \(\left(1\right);\left(4\right)\Rightarrow\widehat{DEB}+\widehat{DCS}=\dfrac{1}{2}\left(sđ\widehat{DCB}+sđ\widehat{SA}+sđ\widehat{DA}+sđ\widehat{BS}\right)=\dfrac{360^o}{2}=180^o\)

Hay \(\widehat{DEH}+\widehat{DCH}=180^o\)

Vậy: tứ giác EHCD nội tiếp được trong một đường tròn.

Phương Uyên
Xem chi tiết
nguyễn trường nam
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
8 tháng 6 2017 lúc 14:48

Tứ giác nội tiếp

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 4 2017 lúc 7:55

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

The Moon
Xem chi tiết
The Moon
Xem chi tiết
The Moon
Xem chi tiết
The Moon
Xem chi tiết