GIÚP EM CÂU A VỚI Ạ,GẤP LẮM RỒI ẠAAAA
Trên đường tròn tâm O có một cung AB và S là điểm chính giữa của cung đó. Trên dây AB lấy hai điểm E và H. Các đường thẳng SH và SE cắt đường tròn theo thứ tự tại C và D. Chứng minh :
a) Góc SHA= góc SCD
b)EHCD là một tứ giác nội tiếp ?
GIÚP EM CÂU A VỚI Ạ,GẤP LẮM RỒI ẠA
Trên đường tròn tâm O có một cung AB và S là điểm chính giữa của cung đó. Trên dây AB lấy hai điểm E và H. Các đường thẳng SH và SE cắt đường tròn theo thứ tự tại C và D. Chứng minh :
a) Góc SHA= góc SCD
b)EHCD là một tứ giác nội tiếp ?
GIÚP EM CÂU A VỚI Ạ
Trên đường tròn tâm O có một cung AB và S là điểm chính giữa của cung đó. Trên dây AB lấy hai điểm E và H. Các đường thẳng SH và SE cắt đường tròn theo thứ tự tại C và D. Chứng minh :
a) Góc SHA= góc SCD
b)EHCD là một tứ giác nội tiếp ?
Trên đường tâm O có một cung AB và S là điểm chính giữa của cung đó.Trên dây AB lấy hai điểm E và H.Các đường thẳng SH và SE cắt đường tròn theo thứ tự tại C và D.Chứng minh EHCD là một tứ giác nội tiếp
Gọi S là điểm chính giữa của cung AB trên đtròn (O). Trên dây AB lấy 2 điểm E và H. Các đường thẳng SH, SE gặp đtròn tại C và D. Chứng minh rằng EHCD nội tiếp.
1. cho đường tròn (O) đường kính AB và dây CD vuông góc với AB tại F. trên cung BC lấy điểm M. nối A với M cắt CD tại E
a. chứng minh AM là phân gics của góc CMD
b. chứng minh tứ giác EFBM nội tiếp
c. chứng minh AC^2=AE.AM
2. cho đường tròn (O), dây MN và một điểm C ở ngoài đường tròn và nằm trên tia NM. từ một điểm chính giữa P của cung lớn MN kẻ đường kính PQ của đường tròn cắt dây MN tại D. tia CP cắt đường tròn (O) tại điểm thứ hai I. các dây MN và QI cắt nhau tại K
a. chứng minh rằng tứ giác PDKI nội tiếp
b. chứng minh CI.CP=CK.CD
có thể giúp tôi được không ạ?^^
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:
a) Tứ giác BCDE nội tiếp.
b)góc AFE= ACE.
Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:
a) Các tam giác KAB và IBC là những tam giác đêu.
b) Tứ giác KIBC nội tiếp.
Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:
a) Tứ giác FNEM nội tiêp.
b) Tứ giác CDFE nội tiếp.
Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC.
a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó
b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn
Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm
CÁC BẠN ƠI GIÚP MÌNH CÂU C) VỚI
cho đường tròn tâm O đường kính AB. vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O ). lấy điểm E trên cung nhỏ BC ( E khác B và C), AE cắt CD tại F. chứng minh:
a) BEFI là tứ giác nội tiếp đường tròn
b) AE.AF=AC^2
c) khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp tam giác CEF luôn thuộc một đường thẳng cố định.