2 nhân x = 16
x+5 nhân (-6)=4+(16-4 nhân x)
5 nhân x +(-4)nhân(-2)=44-(24-2 nhân x)
Phân tích thành nhân tử
\(16-x^2\)
`16-3x+1^2`
`x^4 y^4 +4x^2 y^2 +4`
`y^2 -4y+4-x^2`
\(16-x^2\)
\(=\left(4-x\right)\left(4+x\right)\)
\(---\)
\(16-3x+1^2\) (kt lại đề bài nhé)
\(x^4y^4+4x^2y^2+4\)
\(=\left[\left(xy\right)^2\right]^2+2\cdot\left(xy\right)^2\cdot2+2^2\)
\(=\left[\left(xy\right)^2+2\right]^2=\left(x^2y^2+2\right)^2\)
\(---\)
\(y^2-4y+4-x^2\)
\(=y^2-2\cdot y\cdot2+2^2-x^2\)
\(=\left(y-2\right)^2-x^2\)
\(=\left(y-2-x\right)\left(y-2+x\right)\)
e.6/11 nhân với x = 9/2 nhân với y = 18/5 nhân với f và -x + y + f = -120
f.x/12 = y/9 = f/5 và x.y.f = 20
h. x+16/9 = y-25/16 = f+9/25 và 2.x^3-1=15
i.3/5 nhân với x = 2/3 nhân với y và x-3y+4f=62
giải pt
căn(9 nhân(x-1)^2) -12 =0
b, căn(4 nhân (3-x))=16
\(\sqrt{9.\left(x-1\right)^2}-12=0\)
=> 3.(x - 1) - 12 = 0
=> 3x - 15 = 0
=> 3x = 15
=> x = 5
b) \(\sqrt{4.\left(3-x\right)}=16\) (ĐKXĐ: x ≤ 3)
\(\Rightarrow\sqrt{3-x}=8\)
=> 3 - x = 64
=> x = -61
Phân tích thành nhân tử
\(1-8x+16x^2 -y^2\)
\(x^2 -2xy+y^2 -z^2\)
\(x^2 +4xy-16+4y^2\)
\(x^2 -16-4xy+4y^2\)
1: =(16x^2-8x+1)-y^2
=(4x-1)^2-y^2
=(4x-1-y)(4x-1+y)
2: =(x^2-2xy+y^2)-z^2
=(x-y)^2-z^2
=(x-y-z)(x-y+z)
3: =(x^2+4xy+4y^2)-16
=(x+2y)^2-4^2
=(x+2y-4)(x+2y+4)
4: =(x^2-4xy+4y^2)-16
=(x-2y)^2-4^2
=(x-2y-4)(x-2y+4)
Phân tích thành nhân tử: 9(x-1)2-16(x-2)2
\(9\left(x-1\right)^2-16\left(x-2\right)^2\)
\(=\left(3x-3\right)^2-\left(4x-8\right)^2\)
\(=\left(3x-3-4x+8\right)\left(3x-3+4x-8\right)\)
\(=\left(-x+5\right)\left(7x-11\right)\)
bài 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
16) 2x+2y-x^2-xy
17)x^2-2x-4y^2-4y
18)x^2y-x^3-9y+9x
19)x^2.(x-1)+16.(1-x)
20)2x^2+3x-2xy-3y
16) 2x + 2y - x2 - xy = ( 2x + 2y ) - ( x2 + xy ) = 2( x + y ) - x( x + y ) = ( x + y )( 2 - x )
17) x2 - 2x - 4y2 - 4y = ( x2 - 4y2 ) - ( 2x + 4y ) = ( x - 2y )( x + 2y ) - 2( x + 2y ) = ( x + 2y )( x - 2y - 2 )
18) x2y - x3 - 9y + 9x = ( x2y - x3 ) - ( 9y - 9x ) = x2( y - x ) - 9( y - x ) = ( y - x )( x2 - 9 ) = ( y - x )( x - 3 )( x + 3 )
19) x2( x - 1 ) + 16( 1 - x ) = x2( x - 1 ) - 16( x - 1 ) = ( x - 1 )( x2 - 16 ) = ( x - 1 )( x - 4 )( x + 4 )
20) 2x2 + 3x - 2xy - 3y = ( 2x2 - 2xy ) + ( 3x - 3y ) = 2x( x - y ) + 3( x - y ) = ( x - y )( 2x + 3 )
20, \(2x^2+3x-2xy-3y=2x\left(x-y\right)+3\left(x-y\right)=\left(2x+3\right)\left(x-y\right)\)
16, \(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
17, \(x^2-2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x-2y-2\right)\left(x+2y\right)\)
18, \(x^2y-x^3-9y+9x=-x\left(x^2-9\right)+y\left(x^2-9\right)=\left(-x-y\right)\left(x^2-9\right)=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
19, \(x^2\left(x-1\right)+16\left(1-x\right)=x^2\left(x-1\right)-16\left(x-1\right)=\left(x^2-16\right)\left(x-1\right)=\left(x-4\right)\left(x+4\right)\left(x-1\right)\)
Bài 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
16) 2x + 2y - x2 - xy
= ( 2x - x2 ) + ( 2y - xy )
= x ( 2 - x ) + y ( 2 - x )
= ( 2 - x ) ( x + y )
17) x2 - 2x - 4y2 - 4y
= ( x2 - 4y2 ) - ( 2x + 4y )
= ( x - 2y ) ( x + 2y ) - 2 ( x + 2y )
= ( x + 2y ) ( x - 2y - 2 )
18) x2y - x3 - 9y +9x
= ( 9x + x3 ) + ( x2y - 9y )
= x ( 9 + x2 ) + y ( x2 - 9 )
= x ( 9 + x2 ) - y ( 9 + x2 )
= ( 9 + x2 ) ( x - y )
= ( 3 - x ) ( 3 + x ) ( x - y )
19) x2 ( x - 1) + 16 (1 - x )
= x2 ( x - 1 ) - 16 ( x - 1 )
= ( x - 1 ) ( x2 - 16 )
= ( x - 1 ) ( x - 4 ) ( x + 4 )
20) 2x2 + 3x - 2xy - 3y
= 2x2 + 3x - ( 2xy + 3y )
= x ( 2x + 3 ) - y ( 2x + 3 )
= ( 2x + 3 ) ( x - y )
15+16:{10:[(2 nhân x+3 nhân x -6):2+3]+6}+5
Mọi ng giải giúp mình nha
4 mũ 2 trừ x bằng 4 mũ x nhân 16
\(4^{2-x}=4^{16x}\)
\(2-x=16x\)
\(17x=-2\)
\(x=-\dfrac{2}{17}\)
Đề Phân tích đa thức thành nhân tử 1/(1 - x )+ 1/(1+x)+2/(1+x^2)+ 4/(1+x^4)+8/(1+x^8) - 16/(1+ x^16)