Câu 1:Cho hàm số y=mx+m-2 (với m là tham số). Để đồ thị hàm số trên tạo với trục tung một góc vuông thì m nhận giá trị là A.m≤0. B. m≥0. C..m=0. D.m
Cho hàm số bậc nhất y = mx + (2m + 1)
a, Tìm giá trị của m để đồ thị hàm số đi qua gốc tọa độ 0
b, Cho m = 1, hãy vẽ đồ thị hàm số
c, Xác định m để đồ thị hàm số trên cắt đồ thị của hàm số y = 2x -1 tại một điểm nằm trên trục tung
a, hàm số đi qua gốc tọa độ O
\(\Rightarrow\) đồ thị hàm số có dạng \(y=x.z=mx+(2m+1)\Rightarrow 2m+1=0\)
\(\Rightarrow m=-\dfrac{1}{2}\)
b, khi \(m=1\Rightarrow y=x+3\)
Xét y=0 suy ra x=-3
suy ra lấy điểm A(-3,0)
Xét x=0 suy ra y=3
Lấy điểm B(0,3)
Nối A,B ta được đồ thị cần vẽ
c, đồ thị hàm số trên cắt đồ thị hàm số y=2x-1 tại 1 điểm trên trục tung suy ra gọi điểm đó là M ta có ( giao của 2 đồ thị nha)
M có hoành độ =0
thay vào 2 hàm số trên suy ra:
\(\hept{\begin{cases}y=2m+1\\y=-1\end{cases}\Rightarrow2m+1=-1\Rightarrow m=-1}\)
Xong rồi bạn nha!
quên mất kí hiệu A, B trên hình minh họa -_-
kí hiệu trên hình cũng sai luôn y=x+3 nha
Bạn tự sửa nha
Bài 1: Cho hàm số y = (m - 1) x + m - 3(1) (với m là tham số, m≠1) a) Khi m = 0 hãy v ^ 2 đồ thị hàm số (L) trên mặt phẳng tọa độ Oxy b) Tim m để đồ thị hàm số (1) cắt trục tung tại điểm có tung độ bằng 1 c) Gọi A, B lần lượt là giao điểm của đồ thị hàm số (1) với hai trục tọa độ Ox, Oy. Tim m sao cho tam giác OAB cận.
Cho hàm số y= x3-3x2-mx+2 với m là tham số thực. Tìm giá trị của m để đường thẳng đi qua hai điểm cực trị của đồ thị hàm số tạo với đường thẳng d ; x+4y-5=0 một góc α = 45 ° .
A. m= -1/2
B. m= 1/2
C. m=0
D. m= 1
Ta có y’=3x2-6x-m
Để đồ thị hàm số đã cho có hai điểm cực trị khi phương trình y’=0 có hai nghiệm phân biệt ⇔ ∆ ' = 9 + 3 m > 0 ⇔ m > - 3
Ta có
đường thẳng đi qua hai điểm cực trị Avà B là
Đường thẳng d; x+4y-5=0 có một VTPT là n d → = ( 1 ; 4 ) .
Đường thẳng có một VTCP là n ∆ → = ( 2 m 3 + 2 ; 1 )
Ycbt suy ra:
Suy ra
thỏa mãn
Chọn A.
Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: \(y_0=\left(m+5\right)x_0+2m-10\)
<=> \(mx_0+5x_0+2m-10-y_0=0\)
<=> \(m\left(x_o+2\right)+5x_0-y_0-10=0\)
Để M cố định thì: \(\hept{\begin{cases}x_0+2=0\\5x_0-y_0-10=0\end{cases}}\) <=> \(\hept{\begin{cases}x_0=-2\\y_0=-20\end{cases}}\)
Vậy...
cho hàm số y=\(\dfrac{x^2+mx+1}{x+m}\)với m là tham số. với giá trị nào của tham số m thì hàm số đạt cực đại tại x=2?
a. m=-3 b.m=3 c.m=-1 d.m=0
\(y=\dfrac{x^2+mx+1}{x+m}=x+\dfrac{1}{x+m}\)
\(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1-\dfrac{1}{\left(2+m\right)^2}=0\\\dfrac{2}{\left(m+2\right)^3}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m=-3\\m< -2\end{matrix}\right.\)
Chọn a
Tìm giá trị của m để đồ thị hàm số y=mx+4 (m khác 0) tạo với trục tung và trục hoành một tam giác có diện tích bằng 8 (đơn vị diện tích)
Gọi giao điểm đồ thị hàm số y=mx+4 với trục tung và trục hoành lần lượt là A và B.
Ta có: OA=4
OB=\(\left|\frac{-4}{m}\right|\)
Ta có diện tích tam giác AOB=\(\frac{1}{2}.OA.OB\)
\(\Leftrightarrow8=\frac{1}{2}.4.\left|\frac{-4}{m}\right|\)
\(\Leftrightarrow4=\left|\frac{-4}{m}\right|\)
c giải phương trình trên là ra kết quả...
Tìm giá trị của m để đồ thị hàm số y=mx+4 (m khác 0) tạo với trục tung và trục hoành một tam giác có diện tích bằng 8 (đơn vị diện tích)
Cho hàm số y = \(\dfrac{\left(3m+1\right)x-m^2+m}{x+m}\) trong đó m là tham số khác 0. Gọi S là tập hợp các giá trị thực của m để tại giao điểm của đồ thị với trục hoành, tiếp tuyến sẽ vuông góc với đường thẳng x+y-2020 = 0. Khi đó tổng giá trị các phần tử thuộc S bằng
Tiếp tuyến có hệ số góc bằng 1
\(y'=\dfrac{m\left(3m+1\right)-\left(-m^2+m\right)}{\left(x+m\right)^2}=\dfrac{4m^2}{\left(x+m\right)^2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m}{3m+1}\\\dfrac{4m^2}{\left(x+m\right)^2}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m}{3m+1}\\\left[{}\begin{matrix}2m=x+m\\-2m=x+m\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m}{3m+1}\\\left[{}\begin{matrix}x=m\\x=-3m\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\dfrac{m^2-m}{3m+1}\\-3m=\dfrac{m^2-m}{3m+1}\end{matrix}\right.\)
\(\Leftrightarrow...\)
cho hàm số y=mx (1) (với m là tham số , m khác 0) a)Tìm m để đồ thị hàm số 1đi qua điểm M(-1;-1).Với m vừa tìm được ,vẽ đồ thị hàm số (1) trên mặt phẳng tọa độ Oxy b)Tìm m để đồ thị hàm số (1) song song với đường thẳng (d):y+(m2-2)x+2m+3 c)Tìm m để khoảng cách từ gốc tọa độ O đến đồ thị hàm số (1) bằng 2/căn5
1. Cho hàm số y=(3+2k)x-3k-1
a) Với giá trị nào của k thì hàm số trên là hàm số bậc nhất?
b) Tìm k để đồ thị hàm số đã cho cắt trục tung tại điểm có tung độ là 5?
2.Cho 2 hàm số y=2x+4(d1) và y=-x-2(d1')
a) vẽ đồ thị 2 hàm số trên cùng 1 mặt phẳng tọa độ?
b) Tính góc tạo bởi đường thẳng y=2x+4 với trục hoành?
c) gọi giao điểm của 2 đường thẳng là M . Xác định tọa độ điểm M?
3.Cho 3 đường thẳng y=x-1 (d1) ,y=-x+3 (d2) và y=mx-2-3 (d3).Tìm các giá trị của m để 3 đường thẳng đồng quy tại 1 điểm?
Giúp tớ với tớ đang cần rất gấp!!!!
1. a) Để hs trên là hs bậc nhất khi và chỉ khi a>0 --> 3+2k>0 --> k >\(\frac{-3}{2}\)
b) Vì đths cắt trục tung tại điểm có tung độ = 5 --> x=0, y=5
Thay y=5 và x=0 vào hs và tìm k
2. a) Tự vẽ
b) Hệ số góc k=\(\frac{-a}{b}=\frac{-2}{4}=\frac{-1}{2}\)
c) Phương trình hoành độ giao điểm là:\(2x+4=-x-2\)(tìm x rồi thay x vào 1 trong 2 pt --> tính y) (x=-2; y=0)
3. Vì 3 đg thẳng đồng quy -->d1 giao d2 giao d3 tại 1 điểm (giao kí hiệu là chữ U ngược)
Tính tọa độ giao điểm của d1 và d2 --> x=2;y=1
Điểm (2;1) thuộc d3 --> Thay x=2 và y=1 vào d3 -->m=3