Phân tích : 4 + 2 \(\sqrt{ }\)5
Phân tích về dạng nhân tử:
a) \(5+2\sqrt{6}\)
b) \(9+4\sqrt{5}\)
c)\(x+3+4\sqrt{x-1}\)
a, \(\left(\sqrt{2}+\sqrt{3}\right)^2\)
b, \(\left(\sqrt{5}+2\right)^2\)
c, \(\left(\sqrt{x-1}+2\right)^2\)
b4: phân tích thành nhân tử :
a, \(a-5\sqrt{a}\) với a > 0
b, \(a-7\) với a > 0
c, \(a+4\sqrt{a}+4\)
d, \(\sqrt{xy}-4\sqrt{x}+3\sqrt{y}-12\)
a)\(a-5\sqrt{a}=\sqrt{a}\left(\sqrt{a}-5\right)\)
b)\(a-7=\left(\sqrt{a}-\sqrt{7}\right)\left(\sqrt{a}+\sqrt{7}\right)\)
c)\(a+4\sqrt{a}+4=\left(\sqrt{a}+2\right)^2\)
d)\(\sqrt{xy}-4\sqrt{x}+3\sqrt{y}-12=\sqrt{x}\left(\sqrt{y}-4\right)+3\left(\sqrt{y}-4\right)=\left(\sqrt{x}+3\right)\left(\sqrt{y}-4\right)\)
1)Giai phương trình
a) (2\(\sqrt{x}\)+3)(\(\sqrt{x}\)-1)-5= 2x-4
b) x\(\sqrt{x}\)-8 = 3\(\sqrt{x}\) (\(\sqrt{x}\)-2)
2) Cho biểu thức: M= 2y-3x\(\sqrt{y}\) + x2
a) Phân tích M thành nhân tử
b) Tính giá trị M khi x = 2; y= \(\dfrac{18}{4+\sqrt{7}}\)
2
\(M=2y-3x\sqrt{y}+x^2=y-2x\sqrt{y}+x^2+y-x\sqrt{y}\\ =\left(\sqrt{y}-x\right)^2+\sqrt{y}\left(\sqrt{y}-x\right)\\ =\left(\sqrt{y}-x\right)\left(\sqrt{y}-x+\sqrt{y}\right)\\ =\left(\sqrt{y}-x\right)\left(2\sqrt{y}-x\right)\)
b
\(y=\dfrac{18}{4+\sqrt{7}}=\dfrac{18\left(4-\sqrt{7}\right)}{16-7}=\dfrac{72-18\sqrt{7}}{9}=\dfrac{72}{9}-\dfrac{18\sqrt{7}}{9}=8-2\sqrt{7}\\ =7-2\sqrt{7}.1+1=\left(\sqrt{7}-1\right)^2\)
Thế x = 2 và y = \(\left(\sqrt{7}-1\right)^2\) vào M được:
\(M=2\left(\sqrt{7}-1\right)^2-3.2.\sqrt{\left(\sqrt{7}-1\right)^2}+2^2\\ =2\left(8-2\sqrt{7}\right)-6.\left(\sqrt{7}-1\right)+4\\ =16-4\sqrt{7}-6\sqrt{7}+6+4\\ =26-10\sqrt{7}\)
1:
a: =>2x-2căn x+3căn x-3-5=2x-4
=>căn x-8=-4
=>căn x=4
=>x=16
b: \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)-3\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>(căn x-2)(x-căn x+4)=0
=>căn x-2=0
=>x=4
Phân tích thành tích và rút gọn:
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) (\(\sqrt{16}=2\sqrt{4}\))
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}+\frac{\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Phân tích đa thức \(10x-25x^2\sqrt{2}+4\sqrt{2}\) thành nhân tử.
\(-25x^2\sqrt{2}+10x+4\sqrt{2}=-\sqrt{2}\left(25x^2-\dfrac{10}{\sqrt{2}}-4\right)=-\sqrt{2}.\left(\left(25x\right)^2-2.5.\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\dfrac{5}{2}\right)=-\sqrt{2}\left[\left(5x-\dfrac{1}{\sqrt{2}}\right)^2-\dfrac{5}{2}\right]=-\sqrt{2}.\left(5x-\dfrac{1}{\sqrt{2}}-\dfrac{\sqrt{5}}{\sqrt{2}}\right).\left(5x-\dfrac{1}{\sqrt{2}}+\dfrac{\sqrt{5}}{\sqrt{2}}\right)=-\sqrt{2}.\left(5x-\dfrac{1+\sqrt{5}}{\sqrt{2}}\right)\left(5x-\dfrac{1-\sqrt{5}}{\sqrt{2}}\right)\)
phân tích thành nhân tử
a) x-4\(\sqrt{x-2}\) +2 (x>_2)
b) x+4\(\sqrt{x-2}\) +2 (x>_2)
a) \(x-4\sqrt{x-2}+2\left(x\ge2\right)\)
\(=x-4\sqrt{x-2}-2+4\)
\(=\left(x-2\right)-4\sqrt{x-2}+4\)
\(=\left(\sqrt{x-2}\right)^2-2\cdot2\cdot\sqrt{x-2}+2^2\)
\(=\left(\sqrt{x-2}-2\right)^2\)
b) \(x+4\sqrt{x-2}+2\left(x\ge2\right)\)
\(=x+4\sqrt{x-2}+4-2\)
\(=\left(x-2\right)+4\sqrt{x-2}+4\)
\(=\left(\sqrt{x-2}\right)^2+2\cdot2\cdot\sqrt{x-2}+2^2\)
\(=\left(\sqrt{x-2}+2\right)^2\)
1.Phân tích đa thức thành nhân tử:
a) \(x^3+\sqrt{3}x+6x^2+6\sqrt{3}x^2\)
b) \(x^4-6\sqrt{3}x+6x^3-36\sqrt{3}\)
c) \(x^5+\sqrt{3}x^5-y^5-\sqrt{3}y^5\)
Phân tích biểu thức sau thành tích
\(5+\sqrt{5}\)
\(\sqrt{15}-\sqrt{12}\)
\(5+\sqrt{5}=\sqrt{5}\left(\sqrt{5}+1\right)\)
\(\sqrt{15}-\sqrt{12}=\sqrt{3}\left(\sqrt{5}-2\right)\)
M = \(x^2-3x\sqrt{y}+2y=0\)
a; phân tích thành nhân tử
b;tính giá trịcủa M khi \(x=\frac{1}{\sqrt{5}-2};y=\frac{1}{9+4\sqrt{5}}\)
em lam bai nay nhung k bet viet can thuc nen mk qui uoc can la c nhe: vi du can7 la c7
a) M = x2 - 2xcy +y - xcy +y = (x -cy)2 - cy(x - cy) = (x - cy)(x-cy -cy) = (x-cy)(x-2cy)
b) chị thay vao rui tinh nhu bai toan don gian
em hoc lop8 chuyen toantin
3x\(\sqrt{y}\) mà bác ngân :v
nhẩm no: a+b+c=1-3+2=0=> sẽ có no x=\(\sqrt{y}\)
ta tách :\(x^2-x\sqrt{y}-2x\sqrt{y}+2y\)=.....
còn câu b thay vào. trục căn thức r tính nhé
Cho \(A=x^2+3x\sqrt{y}+2y\)
a, Phân tích A thành nhân tử
b, Tính A khi \(x=\frac{1}{\sqrt{5}-2}\)và \(y=\frac{1}{9+4\sqrt{5}}\)
Vì với mỗi trận đấu đội thắng được cộng 2 điểm, đội thua không được điểm, 2 đội hoà đều được cộng 1 điểm
=>Sau mỗi trận đấu, tổng số điểm tăng thêm 2 điểm
Vì có n người tham gia=>có n.(n-1)/2 trận đấu=>Có tổng cộng n.(n-1) điểm
Ta sắp xếp n người theo số điểm tăng dần là S1,S2,...,Sn với \(S1\le S2\le...\le Sn;S1+S2+...+Sn=n.\left(n-1\right)\)
Gọi 2 số Sa và S(a+1) có khoảng cách lớn nhất=>\(S1\le...\le Sa\le S\left(a+1\right)\le...\le Sn\)
Đặt \(S1+...+Sa=b\le Sa+...+Sa=a.Sa=>Sa\ge\frac{b}{a}\)(1)
Vì S1+S2+...+Sn=n(n-1)
=>S(a+1)+...+Sn=n(n-1)-(S1+...+Sa)=n(n-1)-b
Do đó: \(S\left(a+1\right)+...+Sn=n\left(n-1\right)-b\ge S\left(a+1\right)+...+S\left(a+1\right)=\left(n-a\right).S\left(a+1\right)\)
\(=>S\left(a+1\right)\le\frac{n\left(n-1\right)-b}{n-a}\)(2)
Lại có: Xét a người S1,...Sa có tất cả: a(a-1)/2 trận đấu lẫn nhau
=>Sau những trận đấu lẫn nhau có tổng số điểm là a(a-1)
Vì a người S1,...Sa còn đấu với n-a người S(a+1),...,Sn
=>Tổng số điểm sẽ lớn hơn hoặc bằng a(a-1)=>\(b\ge a\left(a-1\right)\)(3)
Áp dụng (1),(2) và (3) ta có:
\(S\left(a+1\right)-S\left(a\right)\le\frac{n\left(n-1\right)-b}{n-a}-\frac{b}{a}=\frac{n\left(n-1\right)a-nb}{\left(n-a\right)a}\le\frac{n\left(n-1\right)a-n.a\left(a-1\right)}{\left(n-a\right)a}=\frac{n.a.\left(n-a\right)}{\left(n-a\right).a}=n\)Dấu "=" có thể xảy ra khi đội thấp nhất thua hết được 0 điểm, (n-1) đội còn lại hoà lẫn nhau và thắng đội thấp nhất nên được n điểm
Vậy khoảng cách lớn nhất giữa 2 đội xếp liên tiếp là n (điểm)