Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bánh mì nóng
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 16:30

a: 

 

Sửa đề: \(P=\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{4x^2}{x^2-9}\right):\left(\dfrac{5}{3-x}-\dfrac{4x+2}{3x-x^2}\right)\)\(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{4x^2}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{5x-4x-2}{x\left(3-x\right)}\)

\(=\dfrac{-x^2-6x-9+x^2-6x+9-4x^2}{\left(x-3\right)\left(x+3\right)}:\dfrac{x-2}{x\left(3-x\right)}\)

\(=\dfrac{-4x^2-12x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x\left(3-x\right)}{x-2}\)

\(=\dfrac{-4x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-x\left(x-3\right)}{x-2}=\dfrac{4x^2}{x-2}\)

b: x^2-4x+3=0

=>x=1(nhận) hoặc x=3(loại)

Khi x=1 thì \(P=\dfrac{4\cdot1^2}{1-2}=-4\)

c: P>0

=>x-2>0

=>x>2

d: P nguyên

=>4x^2 chia hết cho x-2

=>4x^2-16+16 chia hết cho x-2

=>x-2 thuộc {1;-1;2;-2;4;-4;8;-8;16;-16}

=>x thuộc {1;4;6;-2;10;-6;18;-14}

Lương Bảo Trân
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 14:45

Bài 1:

Ta có: \(4-2\left(x+1\right)=2\)

\(\Leftrightarrow2\left(x+1\right)=2\)

\(\Leftrightarrow x+1=1\)

hay x=0

Bài 2: 

Ta có: \(\left|2x-3\right|-1=2\)

\(\Leftrightarrow\left|2x-3\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

Đậu Phạm Nhật Nguyên
24 tháng 4 2022 lúc 15:44

chưa biết

Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 4 2021 lúc 20:44

Bài 3: 

a) Đặt f(x)=0

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

b) Đặt f(x)=0

\(\Leftrightarrow x^2-7x+12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
1 tháng 4 2021 lúc 20:45

Bài 3:

c) Đặt f(x)=0

\(\Leftrightarrow x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

d) Đặt f(x)=0

\(\Leftrightarrow x^4+2=0\)

\(\Leftrightarrow x^4=-2\)(Vô lý)

Xem chi tiết
Moon Moon
Xem chi tiết
لجنه
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2021 lúc 20:51

a: \(P=\dfrac{x^2+6x+9-x^2+6x-9-4}{\left(x-3\right)\left(x+3\right)}:\dfrac{3x-1}{x-3}\)

\(=\dfrac{4\left(3x-1\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{3x-1}=\dfrac{4}{x+3}\)

 

nguyen anh linh
Xem chi tiết
Quang Khải Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 8 2021 lúc 20:42

a: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)

Ta có: \(A=\dfrac{x^3-3}{x^2-2x-3}+\dfrac{6-2x}{x+1}+\dfrac{x+3}{3-x}\)

\(=\dfrac{x^3-3-2\left(x-3\right)^2-\left(x+3\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x^3-3-2x^2+12x-18-x^2-4x-3}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x^4-3x^2+8x-24}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x^2\left(x-3\right)+8\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x^2+8}{x+1}\)

b: Ta có: A=x-2

\(\Leftrightarrow x^2+8=x^2-x-2\)

\(\Leftrightarrow8+x+2=0\)

hay x=-10

Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

Jurrychan
Xem chi tiết