Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Phương Linh
Xem chi tiết
shitbo
21 tháng 11 2018 lúc 20:28

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

shitbo
21 tháng 11 2018 lúc 20:34

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

Phan Phương Linh
21 tháng 11 2018 lúc 20:41

Thank you nha!

Xem chi tiết
Dương Lam Hàng
8 tháng 7 2018 lúc 20:36

Để 2n+1 và 7n+2 là hai số nguyên tố cùng nhau

<=> ƯCLN(2n+1;7n+2) = 1

<=> 7.(2n+1)-2.(7n+2) chia hết cho 1

<=> 14n+7-14n-4 chia hết cho 1

<=> 3 chia hết cho 1

Vậy n = 3 (thỏa mãn \(n\in N\) )

Chủ acc bị dính lời nguy...
8 tháng 7 2018 lúc 20:40

mik thấy câu rả lời này nhiều lắm,chắc các bn copy của nhau chớ gì.mik cần câu trả lời tự làm của các bn nhưng phải chi tiết ,rõ ràng và chính xác

Kiên-Messi-8A-Boy2k6
8 tháng 7 2018 lúc 21:10

Gọi \(\left(2n+1;7n+2\right)=d\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\7n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}14n+7⋮d\\14n+4⋮d\end{cases}\Rightarrow}\left(14n+7\right)-\left(14n+4\right)⋮d}\)

\(\Rightarrow3⋮d\Rightarrow d\in\left\{1;3\right\}\)

\(d=3\Rightarrow2n+1⋮3\Rightarrow4n+2⋮3\Rightarrow3n+n+2⋮3\)

\(\Rightarrow n+2⋮3\Rightarrow n=3k-2\left(k\inℕ^∗\right)\)

=> d=3  thì rút gọn được

\(\Rightarrow n#3k-2\Rightarrow\)tối giản

Huyền Hoàng Thị
Xem chi tiết
Nguyễn Kiều Minh Vy
Xem chi tiết
Đinh Tuấn Việt
28 tháng 7 2015 lúc 14:56

Để 2n + 1 và 7n + 2 nguyên tố cùng nhau

<=> ƯCLN(2n + 1; 7n + 2) = 1

<=> 7.(2n + 1) - 2.(7n + 2) chia hết cho 1

<=> 14n + 7 - 14n + 4 chia hết cho 1

<=> 3 chia hết cho 1

Vậy n = 3 

Lê Quang Anh
17 tháng 11 2016 lúc 20:29

n là 3

Nguyễn Quang Đức
17 tháng 11 2016 lúc 21:03

n khác 3k+1 nhé bạn

Bảo Chi Lâm
Xem chi tiết
shitbo
25 tháng 12 2018 lúc 16:54

Gọi d=UCLN(2n+3,4n+1)

Ta có:

2n+3 chia hết cho d

4n+1 chia hết cho d

=> 2(2n+3)-(4n+1) chia hết cho d

<=> 5 chia hết cho d

<=> d E {1;5}

2 số trên nguyên tố cùng nhau

<=> 2n+3 ko chia hết cho 5

Giả sử 2n+3 chia hết cho 5

=> 2n+8 chia hết cho 5 <=> 2(n+4) chia hết cho 5

<=> n+4 chia hết cho 5

Vậy với n khác: 5k+1 (k E N)

thì 2 số trên nguyên tố cùng nhau

đỗ việt hùng
Xem chi tiết
Feliks Zemdegs
20 tháng 10 2015 lúc 18:58

1.1+3+5+...+(2n-1)=225 
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1} = 225 
<=> (2n.2n):4 = 225 
<=> n2=225 
=> n = 15 và n = -15 
Vì n thuộc N* nên n = 15 thỏa mãn

Anh Lê
20 tháng 10 2015 lúc 18:59

Giải: 
1+3+5+...+(2n-1)=225 
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1}/2 = 225 
<=> (2n.2n):4 = 225 
<=> n^2=225 
suy ra n = 15 và n = -15 
do n thuộc N* nên n = 15 thỏa mãn

gọi d > 0 là ước số chung của 7n+10 và 5n+7 
=> d là ước số của 5.(7n+10) = 35n +50 
và d là ước số của 7(5n+7)= 35n +49 
mà (35n + 50) -(35n +49) =1 
=> d là ước số của 1 => d = 1 
vậy 7n+10 và 5n+7 nguyên tố cùng nhau. 

tích nha

Feliks Zemdegs
20 tháng 10 2015 lúc 19:00

2.1) 
2.Gọi d(d > 0) là ước số chung của 7n+10 và 5n+7 
=> d là ước số của 5.(7n+10) = 35n +50 
Và d là ước số của 7(5n+7)= 35n +49 
Mà (35n + 50) -(35n +49) =1 
=> d là ước số của 1

Mà Ư(1)=1

=> d = 1 
Vậy 7n+10 và 5n+7 nguyên tố cùng nhau. 

 

Phạm Thuỳ Linh
Xem chi tiết
Trần Đình Thiên
28 tháng 7 2023 lúc 15:44

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

Nguyễn Đức Trí
28 tháng 7 2023 lúc 15:45

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

Nguyễn Đức Trí
28 tháng 7 2023 lúc 15:53

Bài 2

\(\left(n-2\right)\left(n^2+n-5\right)\) là số nguyên tố khi n-2=1, suy ra n=3.

Lê Tèo
Xem chi tiết
Nguyễn Ngọc Quý
30 tháng 8 2015 lúc 7:30

Vì 7;8;9 là 3 số nguyên tố cùng nhau nên

BCNN(7;8;9} = 7.8.9 = 504 

B(504) = {0;504;1008;...}

Mà có 3 chữ số nên số cần tìm là 504

Lê Vũ Việt Sơn
14 tháng 12 2022 lúc 22:03

Nguyễn Ngọc Quý ơi
8 ko phải số nguyên tố 
8 chia hết cho 2

 

Nguyễn Hà Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2023 lúc 13:41

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)