Cho tam giác ABC (Â=90 độ), biết AB=5cm,BC=10cm.Tia phân giác của góc B cách AC tại D.
a) Tính : AC,AD,DC
b) Kẻ DH vuông góc với BC ( H thuộc BC). Chứng minh: tam giác HDC đồng dạng ABC
c) Tính tỉ số diện tích 2 tam giác HDC và tam giác ABC
Cho tam giác ABC vuông taỊ a, Biết AB=6cm,BC=10cm.Đường phân giác của góc B cắt AC tại D
a)Tính độ dài các đoạn thẳng AC,AD và DC
b)Kẻ DH vuông góc với BC(H thuộc BC). Chứng minh tam giác DHC đồng dạng vs tam giác ABC
c)Tính tỉ số diện tích của 2 tam giác DHC và ABC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: AC=8cm; AD=3cm; CD=5cm
b) Xét ΔDHC vuông tại H và ΔABC vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔDHC\(\sim\)ΔABC(g-g)
c) Ta có: ΔDHC\(\sim\)ΔABC(cmt)
nên \(\dfrac{S_{DHC}}{S_{ABC}}=\left(\dfrac{DC}{AC}\right)^2=\left(\dfrac{5}{8}\right)^2=\dfrac{25}{64}\)
Cho tam giác ABC vuông taỊ a, Biết AB=6cm,BC=10cm.Đường phân giác của góc B cắt AC tại D a)Tính độ dài các đoạn thẳng AC,AD và DC b)Kẻ DH vuông góc với BC(H thuộc BC). Chứng minh tam giác DHC đồng dạng vs tam giác ABC c)Tính tỉ số diện tích của 2 tam giác DHC và ABC
Cho tam giác ABC vuông tại A, kẻ tia phân giác cắt AC tại D.
a) Biết BC = 5cm, AB = 3 cm. Tính AC và AD.
b) Qua D kẻ DH vuông góc với BC tại H. Chứng minh ∆ABC ∆HDC từ đó chứng minh CH.CB = CD.CA.
c) E là hình chiếu của A trên BC. Chứng minh .
d) O là giao điểm của BD và AH. Qua B kẻ đường thẳng song song với AH cắt các tia CO và CA lần lượt tại M và N. Chứng minh M là trung điểm của BN.
giúp em nhanh câu B ạ
cho tam giác ABC vuông tại A . kẻ AD là phân giác của góc ABC
a ) biết BC = 5cm ; AB = 3cm . tính AC vaf AD
b) qua D kẻ DH vuông góc vs BC tại H . CMR : tam giác ABC ~ vs tam giác HDC
a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(AD=\dfrac{2\cdot3\cdot4}{3+4}\cdot cos45=\dfrac{12}{7}\sqrt{2}\left(cm\right)\)
b: Sửa đề: vuông góc AC
Xét ΔABC vuông tại A và ΔHDC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHDC
Cho tam giác ABC vuông tại A. Kẻ đường cao AE , E thuộc BC.
Chứng minh tam giác ABE đồng dạng với tam giác CBA. từ đó suy ra AB^2 = BE.BC.
Cho BC = 5 cm, AB = 3 cm. Kẻ phân giác BD, D thuộc AC. Kẻ DH vuông góc với BC, H thuôc BC. tính tỉ số AD/CD. Chứng minh HE/HC = BA/BC.
Gọi O là giao điểm của AH với BD. Qua B kẻ đường thẳng song song với AH cắt CO, cắt CA tại M, N. Chứng minh M là trung diểm của BN.
Cho tam giác ABC vuông tại A, có AB=6cm;BC=10cm và đường phân giác BD ( D thuộc cạnh AC). Kẻ DH vuông góc với BC ( H thuộc cạnh BC). a,Tính tỉ số AD/CD b,Nêu 2 cặp cạnh tam giác đồng dạng trên hình? c, Chứng minh AB.DC= HB.BC?
a: AD/CD=BA/CB=3/5
b: ΔBAD đồng dạng với ΔBHD
ΔCHD đồng dạng với ΔCAB
Cho tam giác ABC vuông ở A biết AB = 8cm AC = 6cm, tia phân giác của góc A cắt cạnh huyền tại điểm D từ D kẻ đường thẳng vuông góc với AC cắt AB tại H chứng minh rằng a, tính độ dài BC b, chứng minh tam giác ABC đồng dạng với tam giác HDC c, tính tỉ số BD và DC tính tỉ số diện tích của tam giác ADH và tam giác ADC
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: Sửa đề: vuônggóc BC, cắt AC tại H
Xet ΔCDH vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDH đồng dạng với ΔCAB
c: BD/DC=AB/AC=4/3
Cho tam giác ABC vuông tại A , đường cao AH ,biết: ad= 18cm, ac= 24cm.
a) Chứng minh : tam giác ABC đồng dạng tam giác HBA. từ đó suy ra AB^2 = BC.HB.
b) Tính độ dài các đoạn thẳng BC,AH,BH và CH.
c) Kẻ đường phân giác góc A cắt BC tại K. TÍnh tỉ số diện tích của 2 tam giác AKB và AKC
Giúp mik nha
cho tam giác ABC vuông tại A coa AB=AC=5cm đường phân giác BD(D thuộc AC ) . kẻ DH vuông góc với BC tại H .a) tính độ dài cạnh BC b) chứng minh tam giác ABD = tam giác HBD và BD là đường trung trực của AH c) trên cạnh AB lấy E sao cho AC=AD . đường vuông góc với BD kẻ từ E cắt BC ở G . chứng minh GH=HC