Hình thang ABCD có đáy nhỏ AB=14cm, đáy lớn CD gấp đôi đáy nhỏ, đường cao AH bằng nửa tổng 2 đáy. Bình phương độ dài cạnh bên là bao nhiêu ?
Hình thang cân ABCD có đáy nhỏ AB = 14 cm , đáy lớn CD có độ dài gắp đôi đáy nhỏ , đường cao AH = nửa tổng hai đáy . Bình phương độ dài cạnh bên của hình thang đó là
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Hình thang cân ABCD có 2 đáy nhỏ AB=b , đáy lớn CD=a , đường cao bằng nửa tổng 2 đáy . Tính độ dài cạnh bên theo a và b .
Kẻ đường cao BK và đường cao AH .
Xét tam giác ADC và tam giác BKC có :
\(AD=BC\left(gt\right)\)
\(\widehat{D}=\widehat{C}\)( vì ABCD là hình thang cân )
=> tam giác vuông ADC = tam giác vuông BKC ( cạnh huyền - góc nhọn )
\(\Rightarrow HD=KC=\frac{CD-HK}{2}=\frac{CD-AB}{2}=\frac{a-b}{2}\)
Xét tam giác AHD vuông tại H có :( Py-ta-go )
\(AD^2=AH^2+HD^2\)
\(=\left(\frac{a+b}{2}\right)^2+\left(\frac{a-b}{2}\right)^2\)
\(=\frac{2a^2+2b^2}{4}=\frac{a^2+b^2}{2}\)
Vậy \(AD=\sqrt{\frac{a^2+b^2}{2}}\)
AB=CD-6=16-6=10(cm)
\(AD=\dfrac{AB}{2}=5\left(cm\right)\)
Vì ABCD là hình thang cân
nên \(AD=BC=5\left(cm\right)\)
Chu vi hình thang cân ABCD là:
\(AB+AD+CD+BC=5+5+10+16=36\left(cm\right)\)
Diện tích hình thang cân ABCD là:
\(S_{ABCD}=\dfrac{1}{2}\cdot AH\cdot\left(AB+CD\right)\)
\(=\dfrac{1}{2}\cdot4\cdot\left(10+16\right)=2\cdot26=52\left(cm^2\right)\)
Cạnh AB dài:
16 - 6 = 10 (cm)
Cạnh AD dài:
10 : 2 = 5 (cm)
Chu vi hình thang cân ABCD:
16 + 10 + 5 + 5 = 36 (cm)
Diện tích hình thang:
(16 + 10) × 4 : 2 = 52 (cm²)
Cho hình thang cân ABCD có chu vi bằng 56cm, độ dài cạnh bên AB=5cm, chiều cao =4cm. Tính diện tích hình thang cân đó
Bài 3. Hình thang cân ABCD có đáy nhỏ AB = 10 cm; đáy lớn CD = 20 cm; đường cao AH = 12 cm. Tính độ dài các cạnh bên?
Cho hình thang cân ABCD (AB // CD) đáy lớn CD = 10cm, đáy nhỏ bằng chiều cao, đường chéo vuông góc với cạnh bên. Tính độ dài đường cao.
Kẻ AH vuông góc với BC, BK vuông góc với CD, đường chéo AC vuông góc với AD.
Đặt AH = AB = x => AH = x
Tam giác AHD = tam giác BKC ( c.h - g.n)
=> DH = CK = (10-x)/2
Vậy HC = Hk + CK = x + (10-x)/2 = (x-10)/2
Áp dụng hệ thức lượng trong tam giác ADC vuông tại A
Có AH^2 = DH.HC => x^2 = (10-x)/2 . (x-10)/2
=> 5x^2 = 20
=> x = 2√ 5
Vậy AH = 2√5
cho hình thang cân ABCD có đọ dài đáy AB bằng 4cm, độ dài đáy CD gấp đôi độ dài đáy AB, độ dài cạnh bên AC bằng 5cm. Tính tổng độ dài các cạnh của hình thang cân ABCD
Độ dài đáy CD là:
\(4\times2=8cm\)
Tổng độ dài các cạnh của hình thang cân ABCD là:
\(4+8+5\times2=22cm\)
Cho hình thang cân ABCD đáy nhỏ AB = 4cm, đáy lớn CD = 10cm, cạnh bên BC = 5cm thì đường cao AH bằng:
A. 4,5 cm.
B. 4 cm.
C. 3,5 cm.
D. 3 cm.
Đáp án cần chọn là: B
Kẻ BK ⊥ DC tại K.
Vì ABCD là hình thang cân nên ta có D ^ = C ^ ; AD = BC
=> ΔAHD = ΔBKC (ch – gn) => DH = CK
Suy ra DH = 1 2 (CD – AB)
Suy ra DH = 1 2 (CD – AB) = 1 2 (10 – 4)
Do ABCD là hình thang cân nên AD = BC = 5 cm
Áp dụng định lí Py-ta-go vào tam giác ADH vuông tại H ta có
A D 2 = A H 2 + D H 2 ⇒ A H 2 = A D 2 - D H 2 = 5 2 - 3 2 ⇒ A H = 4
Vậy AH = 4cm.
Cho hình thang cân ABCD đáy nhỏ AB = 12cm, đáy lớn CD = 22cm, cạnh bên BC = 13cm thì đường cao AH bằng:
A. 9 cm.
B. 8 cm.
C. 12 cm.
D. 6 cm.
Đáp án cần chọn là: C
Ta có DH = 1 2 (CD – AB) = 1 2 (22 – 12)
Do ABCD là hình thang cân nên AD = BC = 13 cm
Áp dụng định lí Py-ta-go vào tam giác ADH vuông tại H ta có
A D 2 = A H 2 + D H 2 ⇒ A H 2 = A D 2 - D H 2 = 13 2 - 5 2 ⇒ A H = 12
Vậy AH = 12cm.
1/Cho hình thang ABCD ( AB//CD), biết góc A = 100 độ, góc B =120 độ, tìm số đo góc C và góc D
2/Hình thang Câ ABCD có đáy nhỏ AB =10 cm, đáy lớn CD =20 cm và đường cao AH = 12cm. Tính độ dài cạnh bên
Do AB//CD
=) \(\widehat{A}\)+\(\widehat{D}\)=1800 (2 góc vị trí trong cùng phía )
1000 + \(\widehat{D}\)=1800
\(\widehat{D}\)=1800 - 1000
\(\widehat{D}\)= 800
Xét tứ giác ABCD có :
\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)+\(\widehat{D}\)=3600
1000+1200+\(\widehat{C}\)+800 =3600
3000 +\(\widehat{C}\)=3600
\(\widehat{C}\)= 600
2) Từ B kẻ BE \(\perp\)CD
Xét tam giác ADH (\(\widehat{AH\text{D}}\)=900) và BCE (\(\widehat{BEC}\)=900) có:
AD=BC (tính chất hình thang cân)
\(\widehat{A\text{D}H}\)=\(\widehat{BCE}\)(tính chất hình thang cân)
=) Tam giác ADH = Tam giác BCE (cạch huyền - góc nhọn )
=) DH= CE (2 cạch tương ứng )
Do AB//CD Mà AH\(\perp\)CD=) AH\(\perp\)AB
Xét tứ giác ABEH có
\(\widehat{BAH}\)= \(\widehat{AHE}\) = \(\widehat{BEH}\) = 900
=) Tứ giác ABEH lá hình chữ nhật =) AB=HE=10 cm
Ta có : DH+HE+EC= 20 cm
2DH+10=20
2DH =10
DH = 5 (cm)
xét tam giác vuông AHD
Áp dụng định lí Pitago ta có
AD2=AH2+HD2
AD2=122+52
AD2= 144+25=169
AD=13 cm (đpcm)