với a2 >=36 va abc=1
cm \(\frac{a^2}{3}+b^2+c^2>=ab+bc+ca\)
Cho a,b,c không âm. Chứng minh rằng :
a) a2 + b2 + c2 + 2abc + 2 > hoặc=ab +bc +ca +a+b+c
b)a2 + b2 +c2 +abc +4 > hoặc = 2(ab+bc+ca)
c) 3(a2 + b2 + c2) + abc +4 > hoặc =4 (ab+bc+ca)
d) 3(a2 + b2 + c2) + abc +80 > 4(ab+bc+ca) + 8(a+b+c)
Cho abc=1 va a^3>36
CMR a^3/3 + c^2 +b^2>ab+bc+ca
CMR: \(\frac{a^2}{3}+b^2+c^2>ab+bc+ca\) với \(a^3>36\)và abc=1
Ta có:\(\frac{a^2}{3}+b^2+c^2>ab+bc+ca\)
\(\Leftrightarrow\) \(\frac{a^2}{3}+b^2+c^2-ab-bc-ca>0\)
\(\Leftrightarrow\) \(\frac{a^2}{4}+\frac{a^2}{12}+b^2+c^2-ab-ca+2bc-3bc>0\)
\(\Leftrightarrow\) \(\left(\frac{a^2}{4}+b^2+c^2-ab-ca+2bc\right)+\frac{a^2}{12}-3bc>0\)
\(\Leftrightarrow\) \(\left(\frac{a}{2}-b-c\right)^2+\frac{a^2}{12}-3bc>0\)
\(\Leftrightarrow\) \(\left(\frac{a}{2}-b-c\right)^2+\frac{a^3-36abc}{12a}>0\)
Vì : abc=1 và \(a^3>36\)
\(\Rightarrow\frac{a^3-36abc}{12a}>0\)
Mà:\(\left(\frac{a}{2}-b-c\right)^2\ge0\forall a;b;c\)
\(\Rightarrow\left(\frac{a}{2}-b-c\right)^2+\frac{a^3-35abc}{12a}>0\)
Hay: \(\frac{a^2}{3}+b^2+c^2>ab+bc+ca\)(đpcm)
cho a,b,c >0 va abc=1 c/m
\(\frac{1+ab^2}{c^3}+\frac{1+bc^2}{a^3}+\frac{1+ca^2}{b^3}>=\frac{18}{a^3+b^3+c^3}\)
Ta có 1 + ab2 \(\ge\)\(2b\sqrt{a}\)
1 + bc2 \(\ge2c\sqrt{b}\)
1 + ca2 \(\ge2a\sqrt{c}\)
VT \(\ge\)\(2\left(\frac{b\sqrt{a}}{c^3}+\frac{c\sqrt{b}}{a^3}+\frac{a\sqrt{c}}{b^3}\right)\)
\(\ge2\frac{\left(\sqrt[4]{b^2a}+\sqrt[4]{c^2b}+\sqrt[4]{a^2c}\right)^2}{a^3+b^3+c^3}\)
\(\ge2\frac{\left(3\sqrt[12]{a^3b^3c^3}\right)^2}{a^3+b^3+c^3}\)
\(\ge\frac{18}{a^3+b^3+c^3}\)
tam giác ABC có 3 cạnh a,b,c
a) a2+b2+c2< 2(ab+bc+ca)
b) abc\(\ge\)(a+b-c)(b+c-a)(c+a-b)
a.
Theo BĐT tam giác: \(c< a+b\Rightarrow c^2< ac+bc\)
\(b< a+c\Rightarrow b^2< ab+bc\) ; \(a< b+c\Rightarrow a^2< ab+ac\)
Cộng vế với vế: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b.
Do a;b;c là 3 cạnh của tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\b+c-a>0\\c+a-b>0\end{matrix}\right.\)
\(\left(a+b-c\right)\left(b+c-a\right)\le\dfrac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)
Tương tự: \(\left(b+c-a\right)\left(a+c-b\right)\le c^2\) ; \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)
Nhân vế với vế:
\(\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\)
cho a,b,c >0 va abc=1.
CMR \(\frac{1}{ab+a+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)
Cho a , b , c khac 0 va \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\) Tinh C=\(\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}\)
cho abc = 1 và \(a^3>36\). Cmr: \(\frac{a^2}{3}+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\frac{a^2}{3}+b^2+c^2+2bc-3bc-a\left(b+c\right)\ge0\)
\(\Leftrightarrow\frac{a^2}{4}+\left(b+c\right)^2-a\left(b+c\right)+\frac{a^2}{12}-3bc\ge0\)
\(\Leftrightarrow\left(\frac{a}{2}-b-c\right)^2+\frac{a^3-36abc}{12a}\ge0\)
\(\Leftrightarrow\left(\frac{a}{2}-b-c\right)^2+\frac{a^3-36}{12a}\ge0\)
Mà \(a^3>36\Rightarrow\left\{{}\begin{matrix}a>0\\a^3-36>0\end{matrix}\right.\)
\(\Rightarrow\left(\frac{a}{2}-b-c\right)^2+\frac{a^3-36}{12a}>0\)
Dấu "=" ko xảy ra nên BĐT đã cho sai
cho a, b, c thỏa abc>1; \(a^3>36\). CMR: \(\frac{a^2}{3}+b^2+c^2>ab+bc+ca\)