Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
OoO Kún Chảnh OoO
Xem chi tiết
Hoàng Tử
Xem chi tiết
Fan Inazuma Eleven
Xem chi tiết
Donald
13 tháng 10 2019 lúc 19:14

1,

a, x + 1  ⋮ 16

=> x + 1 thuộc B(16)

=> x + 1 thuộc {0;; 16; 32; 64;....}

=> x thuộc {-1; 15; 31; 63; ...}

các phần còn lại làm tương tự

Fan Inazuma Eleven
13 tháng 10 2019 lúc 19:18

DONALD ơi , bạn đã làm thì phải làm hết chứ

tran thi quynh nhu
Xem chi tiết
tran thi quynh nhu
28 tháng 2 2018 lúc 21:22

giúp tui với 

tui đang cần lắm đó bà con ơi

Cư Dinh
2 tháng 6 2021 lúc 11:20

em mới lớp 5 seo anh gọi em là: BÀ CON

Khách vãng lai đã xóa
HEV_NTP
29 tháng 8 2021 lúc 8:58

Ngáo hết 

 

Nguyễn Bảo Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2022 lúc 23:56

a: =>n-1+5 chia hết cho n-1

=>\(n-1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{2;0;6;-4\right\}\)

b: =>n^2+2n+1-4 chia hết cho n+1

=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)

c: =>3n-6+5 chiahết cho n-2

=>\(n-2\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{3;1;7;-3\right\}\)

a,(n+4) \(⋮\) (n-1) \(\Leftrightarrow\) n -1 + 5 \(⋮\) (n-1)  \(\Leftrightarrow\) 5 \(⋮\) n - 1 \(\Leftrightarrow\) n-1 \(\in\) { -5; -1; 1; 5} \(\Leftrightarrow\)n\(\in\){-4;0;2;6}

b,Theo Bezout  n2 +2n - 3 \(⋮\) n + 1 \(\Leftrightarrow\) (-1)2 + 2(-1) - 3  \(⋮\) n+1

\(\Leftrightarrow\) -4 \(⋮\) n+1 \(\Leftrightarrow\) n+1 \(\in\) { -4; -1; 1; 4} \(\Leftrightarrow\) n \(\in\) { -5; -2; 0; 3}

c, 3n -1 \(⋮\) n-2 \(\Leftrightarrow\) 3(n-2) + 5 \(⋮\) n-2 \(\Leftrightarrow\) 5 \(⋮\) n-2 \(\Leftrightarrow\) n-2 \(\in\) { -5; -1; 1; 5}

\(\in\) { -3; 1; 3; 7}

d, 3n + 1 \(⋮\) 2n - 1 

\(\Leftrightarrow\)2.(3n+1) \(⋮\) 2n -1 

\(\Leftrightarrow\) 6n + 2 \(⋮\) 2n - 1

\(\Leftrightarrow\) 6n - 3 + 5 \(⋮\) 2n-1

\(\Leftrightarrow\) 3.(2n-1) + 5 \(⋮\) 2n-1

\(\Leftrightarrow\)                 5 \(⋮\) 2n - 1

\(\Leftrightarrow\) 2n - 1 \(\in\) { -5; -1; 1; 5}

\(\Leftrightarrow\) n \(\in\) { -2; 0; 1; 3}

 

 

 

hoàng thu phương
Xem chi tiết
Trần Thùy Trang
23 tháng 3 2016 lúc 19:14

Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối

ta được :

( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )

= 99/1.98+99/2.97+...+99/49.50

gọi các thừa số phụ là k1, k2, k3, ..., k49 thì

A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49)  x 2.3.4....97.98

= 99.(k1+k2+...+k49)

=> A chia hết cho 49               (1)

b) 

Cộng 96 p/s theo từng cặp :

a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)

.................................................. ( làm tiếp nhé )

mỏi woa

Tôi không biết
1 tháng 4 2017 lúc 21:01

Thùy Trang giỏi quá!!!

Erza Scarlet
24 tháng 1 2018 lúc 11:47

coppy sách chứ gì

Nguyen Gia Bao
Xem chi tiết
Nguyen Gia Bao
1 tháng 7 2018 lúc 19:38

Nhanh Nha


 

Nguyễn Thị Phương Thảo
Xem chi tiết
Minh Nguyễn Cao
23 tháng 2 2019 lúc 17:28

Ta thấy 

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)

\(A=2.3.4...98+3.4.5....98+2.4.5....98+...+2.3.4....97\)(phá ngoặc)

=> A là số dương 

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)

Trong 2.3.4.....98 có 11.9 = 99 nên A chia hết cho 99 

b) Khi quy đồng mẫu lên tính B thì b là tích từ 2 đến 96(mẫu số chung)

Ta sẽ có:

B = \(\frac{a}{2.3.....96}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{96}\)

=>\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{96}\right)2.3.4....96\)

Bạn CMTT như câu a là cũng ra

Chúc bạn học tốt

Nguyễn Thị Phương Thảo
25 tháng 2 2019 lúc 22:05

Cảm ơn bạn.Bạn cho mk kb vs bạn nhé.

Dư Thị Khánh Hòa
Xem chi tiết
Hựu Hựu
Xem chi tiết
Vi Huyên
7 tháng 7 2019 lúc 20:20

1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)

Nếu n không chia hết cho 7 thì:

Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7

Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7

Tương tự đến trường hợp n = 7k + 6

=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7

Mà n6 - 1 = (n3 - 1)(n3 + 1)

Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7

Vi Huyên
7 tháng 7 2019 lúc 20:28

3) n(n + 1)(2n + 1)

= n(n + 1)[(n + 2) + (n - 1)]

= n(n + 1)(n + 2) + n(n + 1)(n - 1)

Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp

Nên n(n + 1)(n + 2) chia hết cho 6 (1)

Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp

Nên n(n + 1)(n - 1) chia hết cho 6 (2)

Từ (1), (2) => Đpcm

Nguyen
8 tháng 7 2019 lúc 15:52

2)Đề sai. Sửa:

\(n\left(n^2-1\right)\left(3n+6\right)\)\(=3n\left(n-1\right)\left(n+1\right)\left(n+2\right)\)

Theo nguyên lí Dirichle, chắc chắn có 1 số chia hết cho 4.

\(\Rightarrow3n\left(n-1\right)\left(n+1\right)\left(n+2\right)⋮3⋮4=12\)

Vậy ....