2x - 6 = 7 - x
1) (x+6)(3x-1)+x+6=0
2) (x+4)(5x+9)-x-4=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
4)2x (2x-3)=(3-2x)(2-5x)
5)(2x-7)^2-6(2x-7)(x-3)=0
6)(x-2)(x+1)=x^2-4
7) x^2-5x+6=0
8)2x^3+6x^2=x^2+3x
9)(2x+5)^2=(x+2)^2
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
Tìm x biết:
\(\frac{6^{x+3}-6^{x+1}+6^x}{211}=\frac{7^{2x}+7^{2x+1}+7^{2x-3}}{8\frac{1}{49}}\)
Tìm số tự nhiên x biết:
\(\frac{6^{x+3}-6^{x+1}+6^x}{211}=\frac{7^{2x}+7^{2x+1}+7^{2x-3}}{8\frac{1}{49}}\)
Tìm số tự nhiên x biết:
\(\frac{6^{x+3}-6^{x+1}+6^x}{211}=\frac{7^{2x}+7^{2x+1}+7^{2x-3}}{8\frac{1}{49}}\)
Lời giải:
\(\frac{6^{x+3}-6^{x+1}+6^x}{211}=\frac{7^{2x}+7^{2x+1}+7^{2x-3}}{8\frac{1}{49}}\)
\(\Leftrightarrow \frac{6^x(6^3-6+1)}{211}=\frac{7^{2x}(1+7+\frac{1}{7^3})}{\frac{393}{49}}\)
\(\Leftrightarrow 6^x=7^{2x}.\frac{915}{917}\)
\(\Leftrightarrow (\frac{6}{49})^x=\frac{915}{917}\)
\(\Rightarrow x=\log_{\frac{6}{49}}\frac{915}{917}\)
@Trần Thanh Phương
giúp đc k ạ :3?
Thầy Akai Haruma em hơi thắc mắc dòng cuối thầy ghi là log :<?
Nghĩa là j ạ :<? mong thầy giải cách dễ hơi ạ :V
Đạo hàm của hàm số \(y=\left(-x^2+3x+7\right)^7\) là:
A. \(y'=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
B. \(y'=7\left(-x^2+3x+7\right)^6\)
C. \(y'=\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
D. \(y'=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)
\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
A) 2x³+6x²=x²+3x
B) (2x+5)²=(x+2)²
C) x²-5x+6=0
D) (2x-7)²-6(2x-7)(x-3)=0
E) (x-2)(x+1)=x²-4
G) 2x(2x-3)=(3-2x)(2-5x)
H) (1-x)(5x+3)=(3x-7)(x-1)
F) (x+6)(3x-1)+x+6=0
I) (4x-1)(x-3)=(x-3)(5x+2)
K) (x+4)(5x+9)-x-4=0
H) (x+3)(x-5)+(x+3)(3x-4)=0
M) (2x+3)(-x+7)=0
a) \(\dfrac{7}{x-6}\)=\(\dfrac{x-6}{7}\)
b) \(\dfrac{2x-1}{8}\)=\(\dfrac{-2}{1-2x}\)
a.
ĐKXĐ: \(x\ne6\)
\(\dfrac{7}{x-6}=\dfrac{x-6}{7}\)
\(\Leftrightarrow\dfrac{49}{7\left(x-6\right)}=\dfrac{\left(x-6\right)^2}{7\left(x-6\right)}\)
\(\Rightarrow\left(x-6\right)^2=49=7^2\)
\(\Rightarrow\left[{}\begin{matrix}x-6=7\\x-6=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=13\\x=-1\end{matrix}\right.\) (thỏa mãn)
b. ĐKXĐ: \(x\ne\dfrac{1}{2}\)
\(\dfrac{2x-1}{8}=\dfrac{-2}{1-2x}\)
\(\Leftrightarrow\dfrac{\left(2x-1\right)^2}{8\left(2x-1\right)}=\dfrac{16}{8\left(2x-1\right)}\)
\(\Rightarrow\left(2x-1\right)^2=16=4^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\) (thỏa mãn)
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
bài 7 tìm x
1,x(x+3)-5(x+3)=0 2,5x(x-1)=x-1
3,(x+1)=(x+1)\(^2\) 4,x(2x-3)-2(3-2x)=0
5,\(\left(x-2\right)^2-4=0\) 6,\(36x^2=49\)
7,\(2x\left(x-6\right)-x+6=0\) 8,\(3x\left(2x-1\right)-24x+12=0\)
9,\(x^2-6x+8=0\) 10,\(x^2+2x-15=0\)
1: =>(x+3)(x-5)=0
=>x=5 hoặc x=-3
2: =>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
5: =>(x-4)*x=0
=>x=0 hoặc x=4
10: =>(x+5)(x-3)=0
=>x=3 hoặc x=-5
9: =>(x-2)(x-4)=0
=>x=2 hoặc x=4
7: =>(x-6)(2x-1)=0
=>x=1/2 hoặc x=6
8: =>(2x-1)(3x-12)=0
=>x=4 hoặc x=1/2
Tìm x,biết:
1) |x+2| + |x-5| = 7
2) |x-7| + 2x+5 =6
3) |2x + 1| +|x+3| = 4x
4) |x2 -2x| = x
5) |2x+3| = x+2
6) |5x-4 |= |x+2|
7) |x-2| - |2x - 3| - x = 2
1: Trường hợp 1: x<-2
Pt sẽ là -x-2+5-x=7
=>-2x+3=7
=>-2x=4
hay x=-2(loại)
Trường hợp 2: -2<=x<5
Pt sẽlà x+2+5-x=7
=>7=7(luôn đúng)
Trường hợp 3: x>=5
Pt sẽ là x+2+x-5=7
=>2x-3=7
=>x=5(nhận)
4: \(\left|x^2-2x\right|=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(x^2-2x\right)^2=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x^2-2x-x\right)\left(x^2-2x+x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x^2-3x\right)\left(x^2-x\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;1;3\right\}\)
5: Ta có: \(\left|2x+3\right|=x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\\left(2x+3+x+2\right)\left(2x+3-x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\\left(3x+5\right)\left(x+1\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{3};-1\right\}\)
6: |5x-4|=|x+2|
=>5x-4=x+2 hoặc 5x-4=-x-2
=>4x=6 hoặc 6x=2
=>x=3/2 hoặc x=1/3