Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Fight for my way
Xem chi tiết
Feed Là Quyền Công Dân
16 tháng 8 2017 lúc 22:27

bình phuognw 2 vé rồi thu gọn là được

Ngô Văn Nam
Xem chi tiết
Đinh Quang Minh
10 tháng 4 2017 lúc 21:35

đề nga sơn kaka , anh vừa làm xong , 3x+5y+3z=51+21

3.(x+y+z)=72-2y

x+y+z=72-2y/3

x+y+z bé hơn hoạc bằng 24

/x+y+z/^2 bé hơn hoạc bằng 24^2 , dấu bằng xảy ra khi nào ???????

Luyri Vũ
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 14:07

\(P\le\dfrac{1}{4}\left(4x+3y+4z\right)^2\le\dfrac{1}{4}\left(4x+4y+4z\right)^2=4\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};0;\dfrac{1}{2}\right)\)

Admin (a@olm.vn)
Xem chi tiết
SigMa
Xem chi tiết
missing you =
2 tháng 8 2021 lúc 18:54

thử x=1,y=2,z=3\(=>x^2+y^2+z^2=14>\dfrac{1}{2}\)(vô lí) sai đề

missing you =
2 tháng 8 2021 lúc 19:18

dấu"=" xảy ra tại x=y=z=1/3 nên thay vào biểu thức khi không đúng nê làm thế này:

\(P=x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1}{3}\) dấu"=" xảy ra<=>x=y=z=1/3

Nguyễn Việt Lâm
2 tháng 8 2021 lúc 19:49

Thêm điều kiện \(x+y+z=1\) thì BĐT đúng phải là: \(x^2+y^2+z^2\le1\)

Đẳng thức xảy ra tại \(\left(0;0;1\right)\) và các hoán vị

Lightning Farron
Xem chi tiết
Lightning Farron
13 tháng 8 2016 lúc 6:22

lộn ko fai toán 6 đâu

dia fic
Xem chi tiết
Akai Haruma
4 tháng 1 2021 lúc 19:08

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$

Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$

--------------

Tìm max:

$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$

Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$

$\Rightarrow A=36-2(xy+yz+xz)\leq 36$

Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.

Luyri Vũ
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 6 2021 lúc 8:56

BĐT bên trái rất đơn giản, chỉ cần áp dụng:

\(x^3+x^3+y^3\ge3x^2y\) ; tương tự và cộng lại và được

Ta chứng minh BĐT bên phải:

\(\Leftrightarrow x^4+y^4+z^4+2\ge2\left(x^3+y^3+z^3\right)=\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)

\(\Leftrightarrow2\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)

\(\Leftrightarrow\dfrac{1}{8}\left(x+y+z\right)^4\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)

Thật vậy, ta có:

\(\dfrac{1}{8}\left(x+y+z\right)^4=\dfrac{1}{8}\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]^2\)

\(\ge\dfrac{1}{8}.4\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)=\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(=x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)+xyz\left(x+y+z\right)\)

\(\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và hoán vị

Nguyễn Thu Ngà
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết