x/3 = y/2 và y/4 = z/5 và x+y+z = 30
Tìm x,y,z biết:
a) x/2 = y/5 = z/7 và x + y + z =56
b) x/1,1 = y/1,3 = z/1,4 và 2x - y = 5,5
c)x-1 /2 = y+3 /4 = z-5 /6 và 5z - 3x - 4y = 50
d) x/2 = y/3 = z/5 và xyz = -30
Mk đang gấp . giúp mk vs.
a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)
b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)
\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)
d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)
\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)
Cho x,y.z thỏa mãn x/2=y/3,y/4=z/5 và x+y-z=10.Gía trị x,y,z là
A.x=16;y=24;z=30
B.x=30;y=24;z=16
C.x=2;y=3;z=5
D.x=24;y=16;z=30
Theo bài ra ta cs
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1) ; (2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\Rightarrow\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}}\)
Như vậy ta chọn : A
X/3 = y/4 ; y/6 = z/2 và 2x -y +z=50
x/y=1,2 và 2x - 3y =2
x-5/3= y+7/2 = z/4 và x-y + 2x = 30
tìm x, y,z biết x^2=y^3;y^4=z^5 và x+y-z=30
2.x = 3.y ; 5.y = 4.z và x+y+z=-30
2x=3y
=>\(\dfrac{x}{3}=\dfrac{y}{2}\)
=>\(\dfrac{x}{6}=\dfrac{y}{4}\)
\(5y=4z\)
=>\(\dfrac{y}{4}=\dfrac{z}{5}\)
=>\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{5}\)
mà x+y+z=-30
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{6+4+5}=\dfrac{-30}{15}=-2\)
=>\(x=-2\cdot6=-12;y=-2\cdot4=-8;z=-2\cdot5=-10\)
Tìm x,y,z biết :
1) \(x:y:z=3:5:\left(-2\right)\) và \(5x-y+3z=-16\)
2) \(\dfrac{x}{2}=\dfrac{y}{-3};\dfrac{z}{3}=\dfrac{y}{4}\) và \(x+y+z=5,2\)
3) \(2x=3y;7z=5y\) và \(3x-7y+5z=30\)
4) \(3x=4y=5z\) và \(x-\left(y+z\right)=-21\)
5) \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và \(2x+3y-z=50\)
Bài 1 : Tìm x,y,z biết :
a) 2x = 3y ; 5y = 7z và 3x - 7y + 5z = -30
b) 3x =5y ; 7y = 2z và x + y + z = 74
c) x : z = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\) ; z : y = 1 : \(\dfrac{4}{7}\) và y + z = 66
d) x : y : z = 3 : 4 : 5 và \(2x^2\) + \(2y^2\) - \(3z^2\) = -100
e) \(x:y:z\) = 2 : 5 : 6 và \(2x^2\) + \(4y^2\) - \(4z^2\) = -324
f) \(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{3}\) = \(\dfrac{z-3}{4}\) và \(x-2y+3z=14\)
g)\(\dfrac{x-1}{2}\) = \(\dfrac{y+3}{4}\) =\(\dfrac{z-5}{6}\) và \(5z-3x-4y=50\)
h) \(\dfrac{x}{2}=\dfrac{y}{7}\) và \(xy=56\)
i)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{xy}{200}\)
k) \(\dfrac{x-5}{6}=\dfrac{x+5}{18}\)
l) \(\dfrac{2x-11}{12}=\dfrac{x+5}{20}\)
3x=2y=z và x+y+z=99
2x=3y=-2z và 2x-3y+4z=48
x/0.5=y/0.3=z/0.2 và 2x+3y-4z=34
x-1/3=y-2/4=z-3/5 và x+y+z=30
x+1/3=y+2/-4=z-3/5 và 3x+2y+4z=47
x/4=y/4 và x^2y=100
giúp mình với
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x+y+z-6}{12}=\frac{24}{12}=2\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=10\\z=13\end{cases}}\)
x-1/3=y-2/4=z-3/5 và x+y+z=30
x-1/3 = y-2/4 = z-3/5 = x-1+y-2+z-3/3+4+5 = x+y+z-6/12 = 30-6/12 = 2
=> x-1 = 6 hay x = 7
=> y-2 = 8 hay y = 10
=> z-3=10 hay z = 13