Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Khánh Thương
Xem chi tiết
Đào Trí Bình
Xem chi tiết
Đào Trí Bình
1 tháng 9 2023 lúc 17:10

help me!

cứu tui zới!

Hồ Văn Đạt
1 tháng 9 2023 lúc 17:30

tách ra đk

Đào Trí Bình
1 tháng 9 2023 lúc 17:38

tách kiểu gì

Nguyễn Đức Lâm
Xem chi tiết
Nguyễn Minh Hoàng
23 tháng 7 2021 lúc 19:10

Giả sử \(\sqrt{2}+\sqrt{3}\) là số hữu tỉ ⇒ \(\left(\sqrt{2}+\sqrt{3}\right)^2\) ∈ Q ⇒ 2 + 2.\(\sqrt{2}.\sqrt{3}\) + 3 ∈ Q

Mà 2 và 3 ∈ Q ⇒ 2.\(\sqrt{2}.\sqrt{3}\)  ∈ Q ⇒ \(\sqrt{2}.\sqrt{3}\) ∈ Q ⇒ \(\sqrt{6}\) ∈ Q (Vô lý)

Nguyễn Đức Lâm
Xem chi tiết
Nguyễn Minh Hoàng
23 tháng 7 2021 lúc 18:45

Giả sử \(\sqrt{6}\) là số hữu tỉ ⇒ \(\sqrt{6}\) = \(\dfrac{m}{n}\) với \(\left\{{}\begin{matrix}m,n\in Z^+\\\left(m,n\right)=1\end{matrix}\right.\) ⇒ 6 = \(\dfrac{m^2}{n^2}\) là số nguyên ⇒ \(m^2\)\(n^2\). Mà \(\left(m,n\right)=1\)\(n^2\) = 1 ⇒ 6 = \(m^2\) (Vô lý)

Vậy \(\sqrt{6}\) là số vô tỉ

Trần Minh Hoàng
23 tháng 7 2021 lúc 18:48

Giả sử \(\sqrt{6}\) là số hữu tỉ thì \(\sqrt{6}=\dfrac{a}{b}\left(a,b\in Z;b\ne0;\left(a,b\right)=1\right)\)

\(\Rightarrow6b^2=a^2\).

Khi đó \(a^2⋮b^2\Rightarrow a⋮b\). Đặt a = bk với k là số nguyên. Khi đó \(6b^2=\left(bk\right)^2\Rightarrow6=k^2\), vô lí vì 6 không là số chính phương.

Vậy ta có đpcm.

Minh Ngọc
23 tháng 7 2021 lúc 19:17

Giả sử √6 là số hữu tỉ. Khi đó tồn tại 2 số m,n sao cho

\(\frac{m}{n}=\sqrt{6}\)  ( \(\frac{m}{n}\) là phân số tối giản)

\(\Rightarrow \frac{m^{2}}{n^{2}}=6\)

\(\Rightarrow m^{2}=6n^{2} \Rightarrow 6n^{2}-2mn=m^{2}-2mn \Leftrightarrow m(m-2n)=n(6n-2m)\)

\(\Leftrightarrow \frac{m}{n}=\frac{6n-2m}{m-2n}\)

Vì √6 >2 nên √6n>2n

\(\Rightarrow m>2n\)

\(\Leftrightarrow 3m>6n\)

\(\Rightarrow m>6n-2m\)

\(\Rightarrow \frac{6m-2n}{m-2n}\)

là phân số rút gọn của \(\dfrac{m}{n}\) (trái giả thiết loại)
⇒⇒ đpcm

Juki Mai
Xem chi tiết
The Hell ? What
27 tháng 10 2016 lúc 22:35

Chứng minh cái này thì đơn giản thôi! 
Mình xin trình bày cách chứng minh mà mình tâm đắc nhất: 
Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

Đỗ Lê Tú Linh
2 tháng 7 2015 lúc 10:38

mk nghĩ thế này

a,b) Ta thấy: không có số nào mũ 2 lên được 15 và 2

=>\(\sqrt{15},\sqrt{2}\) là số vô tỉ

c) ta có: \(\sqrt{2}\) là số vô tỉ

mà Số tự nhiên - số vô tỉ luôn luôn là số vô tỉ

=>đpcm

nha bạn

Nguyễn Tiến Đạt
10 tháng 3 2018 lúc 20:44

a, cần CM \(\sqrt{15}\)là số vô tỉ

giả sử \(\sqrt{15}\)là số hữu tỉ 

Đặt \(\sqrt{15}=\frac{a}{b}\left(a,b\in N\right)\)với b\(\ne0\)và phân số\(\frac{a}{b}\) tối giản

Ta có 15=\(\left(\frac{a}{b}^2\right)=\frac{a^2}{b^2}\)

=> a2=15b2=3.5b2

=>a2\(⋮3\)

Mà 3 nguyên tố nên a\(⋮3\)

=>a2\(⋮3^2\)=>  15b2\(⋮3^2\) => \(5b^2⋮3\)

Vì 5 và 3 nguyên tố cùng nhau nên b2\(⋮3\Rightarrow b⋮3\)(3 là số nguyên tố)

Ta có a,b cùng chia hết cho 3 nên \(\frac{a}{b}\)ko tối giản trái với đk của giả sử 

Vậy \(\sqrt{15}\)là số vô tỉ

phần b,c giống The Hell? What

Đào Mai Lệ
Xem chi tiết
Tran Huu Hoang Hiep
Xem chi tiết
Thị Hương Đoàn
Xem chi tiết
s2 Lắc Lư  s2
26 tháng 7 2016 lúc 21:50

căn 2 vô tỉ => 1+ căn 2 vô tỉ => căn của  (1+ căn 2) vô tỉ........cứ như vậy là ra

Thị Hương Đoàn
29 tháng 7 2016 lúc 12:08

nếu có dấu 3 chấm sau sô 2 cuối cùng thì làm ntn v ak?

liem nguyen thi
Xem chi tiết
Nguyễn Ngọc Linh Châu
22 tháng 8 2015 lúc 20:44

giả sữ \(\sqrt{5}\) là số hữu tỉ

=> \(\sqrt{5}\) = \(\frac{m}{n}\) ( m thuộc Z; n thuộc N*; m/n ;à phân số tối giản)

=> 5\(n^2\)=\(m^2\)(*)

=> m chia hết cho 5(2)

=> m=5k (k thuộc Z)

thay vào (*) có:

5\(n^2\) = 25\(k^2\)

<=> n^2 = 5k^2

=>n chia hết cho 5 (2)

(1) (2) => m/n chưa tối giản (vô lí)

=> căn 5 là số vô tỉ