Giả sử \(\sqrt{6}\) là số hữu tỉ ⇒ \(\sqrt{6}\) = \(\dfrac{m}{n}\) với \(\left\{{}\begin{matrix}m,n\in Z^+\\\left(m,n\right)=1\end{matrix}\right.\) ⇒ 6 = \(\dfrac{m^2}{n^2}\) là số nguyên ⇒ \(m^2\) ⋮ \(n^2\). Mà \(\left(m,n\right)=1\) ⇒ \(n^2\) = 1 ⇒ 6 = \(m^2\) (Vô lý)
Vậy \(\sqrt{6}\) là số vô tỉ
Giả sử \(\sqrt{6}\) là số hữu tỉ thì \(\sqrt{6}=\dfrac{a}{b}\left(a,b\in Z;b\ne0;\left(a,b\right)=1\right)\)
\(\Rightarrow6b^2=a^2\).
Khi đó \(a^2⋮b^2\Rightarrow a⋮b\). Đặt a = bk với k là số nguyên. Khi đó \(6b^2=\left(bk\right)^2\Rightarrow6=k^2\), vô lí vì 6 không là số chính phương.
Vậy ta có đpcm.
Giả sử √6 là số hữu tỉ. Khi đó tồn tại 2 số m,n sao cho
\(\frac{m}{n}=\sqrt{6}\) ( \(\frac{m}{n}\) là phân số tối giản)
\(\Rightarrow \frac{m^{2}}{n^{2}}=6\)
\(\Rightarrow m^{2}=6n^{2} \Rightarrow 6n^{2}-2mn=m^{2}-2mn \Leftrightarrow m(m-2n)=n(6n-2m)\)
\(\Leftrightarrow \frac{m}{n}=\frac{6n-2m}{m-2n}\)
Vì √6 >2 nên √6n>2n
\(\Rightarrow m>2n\)
\(\Leftrightarrow 3m>6n\)
\(\Rightarrow m>6n-2m\)
\(\Rightarrow \frac{6m-2n}{m-2n}\)
là phân số rút gọn của \(\dfrac{m}{n}\) (trái giả thiết loại)
⇒⇒ đpcm