Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bí Ẩn Nhân Tố
Xem chi tiết
Luân Đào
2 tháng 1 2019 lúc 21:41

\(VT=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\dfrac{a^2}{ab+ca}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{ca+bc}\ge\left(Schwarz\right)\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Mà theo Cô-si ta có:

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) (hằng đẳng thức)

\(\Rightarrow VT\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c

Nguyễn Thành Trương
20 tháng 3 2019 lúc 14:21

Đặt b + c = x ; c + a = y ; a + b = z
=> a = (y + z - x) / 2 ; b = (x + z - y) / 2 ; c = (x + y - z) / 2
=> P = a/b+c + b/c+a + c/a+b = (y + z - x) / 2x + (x + z - y) / 2y + (x + y - z) / 2z
= 1/2. (y/x + z/x - 1 + x/y + z/y - 1 + x/z + y/z - 1) = 1/2. (x/y + y/x + x/z + z/x + y/z + z/y - 3)

Áp dụng BĐT A/B + B/A ≥ 0 hoặc Cô-si cũng được
=> P ≥ 1/2. (2 + 2 + 2 - 3) = 3/2 (đpcm)

Dấu = xảy ra <=> x = y = z <=> b+c = c+a = a+b <=> a = b = c

Đoàn Lê Na
Xem chi tiết
kudo shinichi
2 tháng 1 2019 lúc 21:22

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Ta c/m BĐT phụ: \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)( b tự c/m nhé. Chuyển vế, c/m VP>=0 là xong )

\(\Rightarrow\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2.\frac{1}{3}\left(a+b+c\right)^2}=\frac{1}{\frac{2}{3}}=\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

                                               đpcm

Đoàn Lê Na
2 tháng 1 2019 lúc 21:34

Có thể c/m luôn giùm bđt phụ không ạ?

kudo shinichi
2 tháng 1 2019 lúc 22:14

\(ab+bc+ca\le\frac{1}{3}.\left(a+b+c\right)^2\)

\(\Leftrightarrow3.\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)

\(\Leftrightarrow3.\left(ab+bc+ca\right)\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( BĐT luôn đúng)

\(\Rightarrow ab+bc+ca\le\frac{1}{3}.\left(a+b+c\right)^2\)

                                             đpcm

lethienduc
Xem chi tiết
Minh Nguyen
8 tháng 7 2020 lúc 22:02

\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
9 tháng 7 2020 lúc 9:49

cách khác ạ :3

Áp dụng BĐT Cauchy Schwarz dạng engel ta có :

\(a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{3}\)

Vậy ta có điều phải chứng minh

Khách vãng lai đã xóa
minhanh
Xem chi tiết
minhanh
19 tháng 4 2017 lúc 21:40

Tích mình 3 tích rồi mình tích lại cho

tống thị quỳnh
19 tháng 4 2017 lúc 22:08

áp dụng bất đẳng thức cô-si ta có \(\left(a^2+b^2\right)\left(a^2b^2+1\right)\ge2\sqrt{a^2b^2}.2\sqrt{a^2b^2.1}\)=2ab.2ab=\(4a^2b^2\)

dấu bằng xảy ra khi và chỉ khi a=b và ab=1 khi và chỉ khi a=b=1hoặc a=b=-1

Hồ Thị Hồng Nghi
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 8:10

Áp dụng BĐT cosi:

\(\left(a+b+b+c+c+a\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\\ \ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\\ \Leftrightarrow2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\\ \Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)

Dấu \("="\Leftrightarrow a=b=c\)

 

Đào Thu Hoà
Xem chi tiết
Girl
30 tháng 3 2018 lúc 18:16

Áp dụng bất đẳng thức AM-GM:

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}=2\sqrt{\frac{a^2}{c^2}}=2\left|\frac{a}{c}\right|\ge\frac{2a}{c}\)

Chứng minh tương tự: \(\hept{\begin{cases}\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\\\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\end{cases}}\)

Cộng theo vế: \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

Dấu "=" khi \(a=b=c\)

nguyễn thị mai hương
Xem chi tiết
Phạm Thị Thùy Linh
5 tháng 5 2019 lúc 13:32

\(a^2+b^2+c^2\ge ab+bc+ca\)\(\left(1\right)\)

\(\Rightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)\(\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)( luôn đúng với mọi a , b , c )

Vậy Phương trình  \(\left(1\right)\)luôn đúng , hay : 

\(a^2+b^2+c^2\ge ab+bc+ca\)\(\left(đpcm\right)\)

Cao Thi Thuy Duong
Xem chi tiết
Hồng Quang
22 tháng 7 2019 lúc 8:45

Giả sử \(a^2+b^2< 2bc\)

\(b^2+c^2< 2ca\)

\(c^2+a^2< 2ab\)

Ta cộng vế theo vế của các bất đẳng thức trên ta được: \(a^2+b^2+c^2+b^2+c^2+a^2< 2bc+2ca+2ab\)\(\Leftrightarrow a^2+b^2+c^2+b^2+c^2+a^2-2bc-2ca-2ab< 0\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2< 0\)( hiển nhiên vô lý )

Từ đó ta suy ra có ít nhất 1 bất đẳng thức trên là đúng ( đpcm )

Phùng Minh Phúc
Xem chi tiết
ILoveMath
22 tháng 1 2022 lúc 21:41

Coi như a, b, c là số dương

Áp dụng BĐT Cô-si ta có:

\(\dfrac{a}{bc}+\dfrac{c}{ba}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{c}{ba}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\left(1\right)\)

Dấu "=" xảy ra ...

\(\dfrac{a}{bc}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\left(2\right)\)

Dấu "=" xảy ra ...

\(\dfrac{c}{ba}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{c}{ba}+\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\left(3\right)\)

Dấu "=" xảy ra ...

Từ (1), (2), (3) ta có:

\(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\\ \Rightarrow2\left(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ \Rightarrow\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Dấu "=" xảy ra ...

Vậy ...

ILoveMath
22 tháng 1 2022 lúc 21:35

a, b, c có phải là số dương không bạn, nếu không thì làm sao dùng BĐT Cô-si được