Tìm x
(2x-1)^3-(x-2)^2=x(4-25x)-6
\(\sqrt{\dfrac{x+2}{4}}+\sqrt{25x+50}-2\sqrt{x+2}=14\) ; \(\sqrt{2x+3}=x\) ; \(\sqrt{25x^2+20x+4}=1\) ; \(\sqrt{\dfrac{x+1}{2x-1}}=2\) ; \(\dfrac{\sqrt{x-2}}{\sqrt{3x+1}}=6\)
Tìm x
1) ĐKXĐ: \(x\ge-2\)
\(pt\Leftrightarrow\dfrac{\sqrt{x+2}}{2}+5\sqrt{x+2}-2\sqrt{x+2}=14\)
\(\Leftrightarrow\dfrac{\sqrt{x+2}+6\sqrt{x+2}}{2}=14\Leftrightarrow7\sqrt{x+2}=28\)
\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)
2) ĐKXĐ: \(x\ge0\)
\(pt\Leftrightarrow2x+3=x^2\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
3) \(pt\Leftrightarrow\sqrt{\left(5x+2\right)^2}=1\Leftrightarrow\left|5x+2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+2=1\\5x+2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4) ĐKXĐ: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{2}\\x\le-1\end{matrix}\right.\)
\(pt\Leftrightarrow\dfrac{x+1}{2x-1}=4\Leftrightarrow x+1=8x-4\)
\(\Leftrightarrow7x=5\Leftrightarrow x=\dfrac{5}{7}\left(tm\right)\)
5) ĐKXĐ: \(x\ge2\)
\(pt\Leftrightarrow\dfrac{x-2}{3x+1}=36\)
\(\Leftrightarrow x-2=108x+36\Leftrightarrow107x=-38\Leftrightarrow x=-\dfrac{38}{107}\left(ktm\right)\)
Vậy \(S=\varnothing\)
Tìm x,biết:
a)(1-3x)2-9x(1+x)=-29
b)(2x-1)3-(x-2)2=x(4-25x)-6
\(a,\Rightarrow1-6x+9x^2-9x-9x^2=-29\\ \Rightarrow-15x=-30\Rightarrow x=2\\ b,\Rightarrow8x^3-12x^2+6x-1-x^2+4x-4=4x-25x^2-6\\ \Rightarrow8x^3+12x^2+6x+1=0\\ \Rightarrow\left(2x+1\right)^3=0\\ \Rightarrow2x+1=0\Rightarrow x=-\dfrac{1}{2}\)
Tìm Nghiệm
a)2x^2+2x+1
c)x^3-25x
d)x^3+27
e)x^3 +3x^2-x-3
f)x^2-x-6
g)x^4-5x^2+4
h)2x^2+V2x
\(2x^2+2x+1\)
Ta thấy : \(x^2\ge0\forall x\Rightarrow2x^2\ge0\forall x\)
\(2x\ge0\)với x dương ; \(2x\le0\)với x âm
\(1\ne0\)
=> \(2x^2+2x+1\ne0\)
=> Vô nghiệm
g) x4 - 5x2 + 4 = 0
<=> x4 - 4x2 - x2 + 4 = 0
<=> x2(x2 - 4) - (x2 - 4) = 0
<=> (x - 1)(x + 1)(x - 2)(x + 2) = 0
<=> x - 1 = 0 hoặc x + 1 = 0 hoặc x - 2 = 0 hoặc x + 2 = 0
<=> x = 1 hoặc x = -1 hoặc x = 2 hoặc x = -2
Vậy nghiệm của x4 - 5x2 + 4 là {1; -1; 2; -2}
Tìm x
a. 4(x-3)^2-(2x-1)(2x+1)=10
b. x^3-25x=0
\(a,\Leftrightarrow4x^2-24x+36-4x^2+1=10\\ \Leftrightarrow-24x=-27\Leftrightarrow x=\dfrac{9}{8}\\ b,\Leftrightarrow x\left(x^2-25\right)=0\\ \Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
\(a,4.\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4.\left(x^2-6x+9\right)-\left(2x^2\right)-1^2=10\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)
\(\Leftrightarrow-24x+27=10\)
\(\Leftrightarrow-24x=-27\)
\(\Leftrightarrow x=\dfrac{27}{24}\)
Vậy \(x=\dfrac{27}{24}\)
\(b,x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Vậy \(x\in\left\{0;\pm5\right\}\)
1) \(\sqrt{x^2}=2x-5\)
2) \(\sqrt{25x^2-10x+1}=2x-6\)
3) \(\sqrt{25-10x+x^2}=2x-5\)
4) \(\sqrt{1-2x+x^2}=2x-1\)
5) \(\sqrt{4x^2+4x+1}=-x-3\)
1) ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{x^2}=2x-5\\ \Rightarrow\left|x\right|=2x-5\\ \Rightarrow\left[{}\begin{matrix}x=2x-5\\x=5-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)
2) ĐKXĐ: \(x\ge3\)
\(\sqrt{25x^2-10x+1}=2x-6\\ \Rightarrow\left|5x-1\right|=2x-6\\ \Rightarrow\left[{}\begin{matrix}5x-1=2x-6\\5x-1=6-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
3) ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{25-10x+x^2}=2x-5\\ \Rightarrow\left|x-5\right|=2x-5\\ \Rightarrow\left[{}\begin{matrix}x-5=2x-5\\x-5=5-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{10}{3}\left(tm\right)\end{matrix}\right.\)
4) ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{1-2x+x^2}=2x-1\\ \Rightarrow\left|x-1\right|=2x-1\\ \Rightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{2}{3}\left(tm\right)\end{matrix}\right.\)
tìm x biết
a) (2x-3)(2x+3)=0
b) x^2-1=0
c) x^2-9=0
d) 4^2-16=0
e) 25x^2-9=0
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(x^2-1=0\Rightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c) \(x^2-9=0\Rightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
d) \(\Rightarrow\left(2x-4\right)\left(2x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
2) \(\Rightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Tìm x biết
a) 25x^2 -1-(5x-1)(x+2) = 0
b) (2x-3)-(3-2x)(x-1) = 0
c) 9 -4x^2-(6+4x)(x-5) = 0
b) ( 2x - 3 ) - ( 3 - 2x )( x - 1 ) = 0
<=> ( 2x - 3 ) + ( 2x - 3 )( x - 1 ) = 0
<=> ( 2x - 3 )( 1 + x - 1 ) = 0
<=> x( 2x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
Vậy .....
a, 25x^2 - 1 - (5x -1)(x+2)=0
=> (5x)^2 - 1 + (5x-1)(x+2) = 0
=> (5x-1)(5x+1) + (5x-1)(x+2) = 0
=> (5x-1)(5x+1+x+2) = 0
=> (5x-1)(6x+3) = 0
=> \(\orbr{\begin{cases}5x-1=0\\6x+3=0\end{cases}}\)
a) 25x2 - 1 - ( 5x - 1 )( x + 2 ) = 0
<=> ( 5x - 1 )( 5x + 1 ) - ( 5x - 1 )( x + 2 ) = 0
<=> ( 5x - 1 )( 5x + 1 - x - 2) = 0
<=> ( 5x - 1 )( 4x - 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{4}\end{cases}}}\)
Vậy .......
Bài 3. Tìm x:
a) (3 – x)^2 – x(x – 4) = 2x – 5
b) x^2 – 2x + 1 = 25x^2
c) 4x^2 – 4x = 24
b) x2 - 2x + 1 = 25x2
<=> (x - 1)2 - 25x2 = 0
<=> (x - 1 - 5x)(x - 1 + 5x) = 0
<=> (-4x - 1)(6x - 1) = 0
<=> \(\orbr{\begin{cases}-4x-1=0\\6x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{1}{4}\\x=\frac{1}{6}\end{cases}}\)
c) 4x2 - 4x = 24
<=> x2 - x - 6 = 0
<=> x2 - 3x + 2x - 6 = 0
<=> x(x - 3) + 2(x - 3) = 0
<=> (x + 2)(x - 3) = 0
<=> \(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
a) (3 - x)2 - x(x - 4) = 2x - 5
<=> x2 - 6x + 9- x2 + 4x = 2x - 5
<=> -2x + 9 = 2x - 5
<=> 2x + 2x = 9 + 5
<=> 4x = 14
<=> x = 7/2
(x+2)+(2x+4)+(7x+6)+...+(25x+18)+(28x+20), Tìm x
Tìm x biết:
a, 6x4 + 25x3 + 12x2 - 25x +6 = 0
b, x5 + 2x4 + 3x3 + 3x2 + 2x +1 = 0
c, x2 (x2 + 2) - x2 - 2 = 0
a: \(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(3x-1\right)\left(2x-1\right)=0\)
hay \(x\in\left\{-2;-3;\dfrac{1}{3};\dfrac{1}{2}\right\}\)
b: \(x^5+2x^4+3x^3+3x^2+2x+1=0\)
\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^2+x^3+x+x^2+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)
=>x+1=0
hay x=-1
c: \(x^2\left(x^2+2\right)-x^2-2=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1