cho a^2+b^2+c^2=14
ab-bc-ca=1
tính s =a+b-c
Cho a,b,c>0 thỏa mẵn abc=a+b+c . Tính GTLN : S=a/sqrt(bc*(1+a^2) +b/sqrt(ca*(1+b^2)) + c/sqrt(ab(1+c^2))
Bài 1: Cho abcd=1. Tính P = aabc+ab+a+1+bbcd+bc+d+1+ccda+cd+a+1+ddab+da+b+1aabc+ab+a+1+bbcd+bc+d+1+ccda+cd+a+1+ddab+da+b+1
Bài 2: Cho a, b, c luôn dương và a3+b3+c3=3abca3+b3+c3=3abc. Tính Q = (1+ab)(1+bc)(1+ca)(1+ab)(1+bc)(1+ca)
Bài 3: Cho x2+y2+z2−zx+4y=6z−14x2+y2+z2−zx+4y=6z−14. Tính P = x1945+y2+zx1945+y2+z
Bài 4: Cho a+b+c=1
a^2+b^2+c^2=1
a^3+b^3+c^3=1
Tính a^2005+b^2006+c^2007
Bài 5: Cho 1a+1b+1c=51a+1b+1c=5 và a+b+c=abc. Tính 1a2+1b2+1c2
cho a,b,c>0 thỏa mãn a+b+c=1. cm:
a, \(P=\frac{3}{ab+bc+ca}+\frac{2}{a^2+b^2+c^2}>14\)
b, \(Q=\frac{3}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\ge12\)
giúp tui vớiiii
Cho ab/a+b=bc/b+c=ca/c+a
Tính M=ab+bc+ca/a^2+b^2+c^2
bài này tôi có thể làm đc nhưng có điều bạn phải tick cho tối đa
`Answer:`
Thêm điều kiện `a,b,c\ne0` nhé.
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\\\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\\\frac{1}{a}+\frac{1}{c}=\frac{1}{b}+\frac{1}{a}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{c}\\\frac{1}{b}=\frac{1}{a}\\\frac{1}{c}=\frac{1}{b}\end{cases}}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
`=>a=b=c`
Lúc này `M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{1.1+1.1+1.1}{1^2+1^2+1^2}=3/3=1`
cho a,b,c thỏa mãn ab/(a+b)=bc/(b+c=ca/(c+a)
tính M=(ab+bc+ca)/(a^2+b^2+c^2)
Cho a,b,c thỏa mãn ab+bc+ca=1. Tính A=(a+b)^2(b+c)^2(c+a)^2/(1-a^2)(1-b^2)(1-c^2)
Sửa lại đề:
Tính \(A=\frac{(a+b)^2(b+c)^2(c+a)^2}{(1+a^2)(1+b^2)(1+c^2)}\)
---------------------------
Lời giải:
\(a^2+1=a^2+ab+bc+ac=(a+b)(a+c)\)
\(b^2+1=b^2+ab+bc+ac=(b+a)(b+c)\)
\(c^2+1=c^2+ab+bc+ac=(c+a)(c+b)\)
\(\Rightarrow (a^2+1)(b^2+1)(c^2+1)=(a+b)^2(b+c)^2(c+a)^2\)
$\Rightarrow A=1$
Cho a+b+c=6. Tính
S=1/bc+2a-8+1/ca+2b-8+1/ab+2c-8 với a, b, c khác 2
Cho 3 số dương a,b,c thỏa mãn a+b+c=1.CMR \(\frac{3}{ab+bc+ca}+\frac{2}{a^2+b^2+c^2}>14\)
Lời giải:
Đặt:
\(A=\frac{3}{ab+bc+ac}+\frac{2}{a^2+b^2+c^2}=\frac{3}{ab+bc+ac}+\frac{2}{(a+b+c)^2-2(ab+bc+ac)}=\frac{3}{ab+bc+ac}+\frac{2}{1-2(ab+bc+ac)}\)
Đặt \(ab+bc+ac=t\Rightarrow A=\frac{3}{t}+\frac{2}{1-2t}\)
Theo hệ quả quen thuộc của BĐT AM-GM:
\(1=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow t=ab+bc+ac\leq \frac{1}{3}\)
Xét:
\(A-14=\frac{3}{t}+\frac{2}{1-2t}=\frac{3}{t}-9+\frac{2}{1-2t}-5\)
\(=\frac{3-9t}{t}+\frac{10t-3}{1-2t}>\frac{3-9t}{t}+\frac{9t-3}{1-2t}=3(1-3t)(\frac{1}{t}-\frac{1}{1-2t})=\frac{3(1-3t)^2}{t(1-2t)}>0\) với mọi \(t>0; t\leq \frac{1}{3}\)
Do đó: \(A>14\) (đpcm).
\(Cho:1/a^2 + 1/b^2 + 1/c^2=0 .Tính: M= bc/a^2 + ca/b^2 + ab/c^2\)
Cho a,b,c la ba so khac 0 va a.b.c=1 thoả mãn: ab/a+b=bc/b+c=ca/c+a
Tính gia tri M= ab+bc+ca / a2+b2+c2
Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath