Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Hoàng Việt
Xem chi tiết
Duyên Lương
Xem chi tiết
Trang Hà
Xem chi tiết
Biokgnbnb
Xem chi tiết
Yuu Shinn
24 tháng 12 2015 lúc 15:02

còn tick nữa tui đủ 145 mà ai kiết zợ

hoang thi le quynh
24 tháng 12 2015 lúc 15:05

bài này tôi có thể làm đc nhưng có điều bạn phải tick cho tối đa

Yen Nhi
28 tháng 2 2022 lúc 20:26

`Answer:`

Thêm điều kiện `a,b,c\ne0` nhé.

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)

\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\\\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\\\frac{1}{a}+\frac{1}{c}=\frac{1}{b}+\frac{1}{a}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{c}\\\frac{1}{b}=\frac{1}{a}\\\frac{1}{c}=\frac{1}{b}\end{cases}}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

`=>a=b=c`

Lúc này `M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{1.1+1.1+1.1}{1^2+1^2+1^2}=3/3=1`

Khách vãng lai đã xóa
hokage naruto
Xem chi tiết
Phạm Minh Triết
Xem chi tiết
Akai Haruma
28 tháng 10 2021 lúc 7:47

Sửa lại đề:

Tính \(A=\frac{(a+b)^2(b+c)^2(c+a)^2}{(1+a^2)(1+b^2)(1+c^2)}\)

---------------------------

Lời giải:

\(a^2+1=a^2+ab+bc+ac=(a+b)(a+c)\)

\(b^2+1=b^2+ab+bc+ac=(b+a)(b+c)\)

\(c^2+1=c^2+ab+bc+ac=(c+a)(c+b)\)

\(\Rightarrow (a^2+1)(b^2+1)(c^2+1)=(a+b)^2(b+c)^2(c+a)^2\)

$\Rightarrow A=1$

Việt Anh
Xem chi tiết
Ánh Dương Hoàng Vũ
Xem chi tiết
Akai Haruma
14 tháng 5 2019 lúc 20:41

Lời giải:

Đặt:


\(A=\frac{3}{ab+bc+ac}+\frac{2}{a^2+b^2+c^2}=\frac{3}{ab+bc+ac}+\frac{2}{(a+b+c)^2-2(ab+bc+ac)}=\frac{3}{ab+bc+ac}+\frac{2}{1-2(ab+bc+ac)}\)

Đặt \(ab+bc+ac=t\Rightarrow A=\frac{3}{t}+\frac{2}{1-2t}\)

Theo hệ quả quen thuộc của BĐT AM-GM:

\(1=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow t=ab+bc+ac\leq \frac{1}{3}\)

Xét:

\(A-14=\frac{3}{t}+\frac{2}{1-2t}=\frac{3}{t}-9+\frac{2}{1-2t}-5\)

\(=\frac{3-9t}{t}+\frac{10t-3}{1-2t}>\frac{3-9t}{t}+\frac{9t-3}{1-2t}=3(1-3t)(\frac{1}{t}-\frac{1}{1-2t})=\frac{3(1-3t)^2}{t(1-2t)}>0\) với mọi \(t>0; t\leq \frac{1}{3}\)

Do đó: \(A>14\) (đpcm).

01.LMN. ÁI 8/2
Xem chi tiết
Nguyễn Thành
Xem chi tiết
Nguyễn Linh Chi
2 tháng 1 2020 lúc 8:47

Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa