Bài 1: Cho abcd=1. Tính P = aabc+ab+a+1+bbcd+bc+d+1+ccda+cd+a+1+ddab+da+b+1aabc+ab+a+1+bbcd+bc+d+1+ccda+cd+a+1+ddab+da+b+1
Bài 2: Cho a, b, c luôn dương và a3+b3+c3=3abca3+b3+c3=3abc. Tính Q = (1+ab)(1+bc)(1+ca)(1+ab)(1+bc)(1+ca)
Bài 3: Cho x2+y2+z2−zx+4y=6z−14x2+y2+z2−zx+4y=6z−14. Tính P = x1945+y2+zx1945+y2+z
Bài 4: Cho a+b+c=1
a^2+b^2+c^2=1
a^3+b^3+c^3=1
Tính a^2005+b^2006+c^2007
Bài 5: Cho 1a+1b+1c=51a+1b+1c=5 và a+b+c=abc. Tính 1a2+1b2+1c2
\(Cho:1/a^2 + 1/b^2 + 1/c^2=0 .Tính: M= bc/a^2 + ca/b^2 + ab/c^2\)
Cho 3 số dương a,b,c thỏa mãn a+b+c = 1/2 và a^2+b^2+c^2+ab+bc+ca =1/6. tính giá trị BT : P = \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Cho a,b,c thỏa mãn \(\frac{a^3}{a^{^2}+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}=1006\).Tính giá trị của biểu thức \(M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Cho \(S=1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\). CMR \(4S+1\)là số chính phương
cho a+b+c=0 và ab+bc+ca=1, tính a^2+b^2+c^2
cho 1/a+1/b+1/c=0
tính A=bc/a^2+ca/b^2+ab/c^2
Bài1:Cho a+b=1.Tính \(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2.\left(a+b\right)\)
Bài 2: Cho a,b,c thuộc R t/m: ab+bc+ca=abc và a+b+c=1.CMR:(a-1)(b-1)(c-1)=0
Bài 3: Cho x-y=12.Tính A=x^3-y^3-36xy
Bài 4: Rút gọn A=(ab+bc+ca)(1/a+1/b+1/c)-abc(1/a^2 + 1/b^2 +1/c^2)
Cho 1/a+1/b+1/c=0 và a+b+c khác 0.Tính N=bc/a^2+ca/b^2+ab/c^2
cho a,b,c >-0 ; a+b+c = 1
\(\frac{3}{ab+bc+ca}\)\(+\frac{2}{a^2+b^2+c^2}\)>=14
Áp dụng a^3+b^3+c^3+3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
Biết 1/a+1/b+1/c=0
Tính A=bc/a^2 + ca/b^2 +ab/c^2
tính A \(=\dfrac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2+\left(ab+bc+ca\right)^2}{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}\)