Cho \(\left\{{}\begin{matrix}0< \alpha< \dfrac{\pi}{4}\\sin\alpha+cos\alpha=\dfrac{\sqrt{5}}{2}\end{matrix}\right.\)
Tính \(P=sin\alpha-cos\alpha\)
Cho \(\alpha\) , \(\beta\in\left(0;\dfrac{\pi}{2}\right)\) và sin \(\alpha\) = \(\dfrac{1}{\sqrt{5}}\) ; Cos \(\alpha\) = \(\dfrac{1}{\sqrt{10}}\) . Tính Cos \(\left(\alpha+\beta\right)\)
Kiểm tra lại đề bài, \(cosa=\dfrac{1}{\sqrt{10}}\) hay \(cos\beta=\dfrac{1}{\sqrt{10}}\)?
1. Cho tam giác $ABC$. Chứng minh rằng $\sin ^{2} A+\sin ^{2} B-\sin ^{2} C=2\sin A.\sin B.\cos C$.
2. Chứng minh rằng:
a. $\sin \alpha .\sin \left(\dfrac{\pi }{3} -\alpha \right).\sin \left(\dfrac{\pi }{3} +\alpha \right)=\dfrac{1}{4} \sin 3\alpha $
b. $\sin 5\alpha -2\sin \alpha \left({\rm cos} {\rm 4}\alpha +\cos 2\alpha \right)=\sin \alpha $
Rút gọn các biểu thức :
a) \(\dfrac{2\sin2\alpha-\sin4\alpha}{2\sin2\alpha+\sin4\alpha}\)
b) \(\tan\alpha\left(\dfrac{1+\cos^2\alpha}{\sin\alpha}-\sin\alpha\right)\)
c) \(\dfrac{\sin\left(\dfrac{\pi}{4}-\alpha\right)+\cos\left(\dfrac{\pi}{4}-\alpha\right)}{\sin\left(\dfrac{\pi}{4}-\alpha\right)-\cos\left(\dfrac{\pi}{4}-\alpha\right)}\)
d) \(\dfrac{\sin5\alpha-\sin3\alpha}{2\cos4\alpha}\)
Cho \(\sin\alpha+\cos\alpha=\frac{\sqrt{6}}{2},a\in\left(0;\frac{\pi}{4}\right)\)
Tính giá trị biểu thức: \(P=\cos\left(\alpha+\frac{\pi}{4}\right)+\sqrt{2\left(1-\sin\alpha\cos\alpha+\sin\alpha-\cos\alpha\right)}\)
1. Cho \(2\cos\left(\alpha+\beta\right)=\cos\alpha\cos\left(\pi+\beta\right)\)
Tính \(A=\dfrac{1}{2\sin^2\alpha+3\cos^2\alpha}+\dfrac{1}{2\sin^2\beta+3\cos^2\beta}\)
2. Rút gọn: a) \(A=4\cos\dfrac{2x}{3}\cos\dfrac{\pi+2x}{3}\cos\dfrac{\pi-2x}{3}\)
b) \(B=\dfrac{\sin\left(a-b\right).\sin\left(a+b\right)}{\cos^2a.\sin^2b}-\tan^2a.\cot^2b\)
3. Chứng minh rằng: Nếu \(2\tan a=\tan\left(a+b\right)\) thì:
a) \(\sin b=\sin a.\cos\left(a+b\right)\)
b) \(3\sin b=\sin\left(2a+b\right)\)
1.
\(2cos\left(a+b\right)=cosa.cos\left(\pi+b\right)\)
\(\Leftrightarrow2cosa.cosb-2sina.sinb=-cosa.cosb\)
\(\Leftrightarrow2sina.sinb=3cosa.cosb\Rightarrow4sin^2a.sin^2b=9cos^2a.cos^2b\)
\(\Rightarrow4\left(1-cos^2a\right)\left(1-cos^2b\right)=9cos^2a.cos^2b\)
\(\Leftrightarrow4-4\left(cos^2a+cos^2b\right)=5cos^2a.cos^2b\)
\(A=\dfrac{1}{cos^2a+2\left(sin^2a+cos^2a\right)}+\dfrac{1}{cos^2b+2\left(sin^2b+cos^2b\right)}\)
\(=\dfrac{1}{2+cos^2a}+\dfrac{1}{2+cos^2b}=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+cos^2a.cos^2b}\)
\(=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+\dfrac{4}{5}-\dfrac{4}{5}\left(cos^2a+cos^2b\right)}=\dfrac{4+cos^2a+cos^2b}{\dfrac{24}{5}+\dfrac{6}{5}\left(cos^2a+cos^2b\right)}=\dfrac{5}{6}\)
2.
\(A=2cos\dfrac{2x}{3}\left(cos\dfrac{2\pi}{3}+cos\dfrac{4x}{3}\right)=2cos\dfrac{2x}{3}\left(cos\dfrac{4x}{3}-\dfrac{1}{2}\right)\)
\(=2cos\dfrac{2x}{3}.cos\dfrac{4x}{3}-cos\dfrac{2x}{3}\)
\(=cos3x+cos\dfrac{2x}{3}-cos\dfrac{2x}{3}\)
\(=cos3x\)
\(B=\dfrac{cos2b-cos2a}{cos^2a.sin^2b}-tan^2a.cot^2b=\dfrac{1-2sin^2b-\left(1-2sin^2a\right)}{cos^2a.sin^2b}-tan^2a.cot^2b\)
\(=\dfrac{2sin^2a-2sin^2b}{cos^2a.sin^2b}-tan^2a.cot^2b=2tan^2a\left(1+cot^2b\right)-2\left(1+tan^2a\right)-tan^2a.cot^2b\)
\(=2tan^2a+2tan^2a.cot^2b-2-2tan^2a-tan^2a.cot^2b\)
\(=tan^2a.cot^2b-2\)
3.
\(\dfrac{2sina}{cosa}=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}\Leftrightarrow2sina.cos\left(a+b\right)=cosa.sin\left(a+b\right)\)
\(\Leftrightarrow sina.cos\left(a+b\right)=sin\left(a+b\right).cosa-cos\left(a+b\right)sina\)
\(\Leftrightarrow sina.cos\left(a+b\right)=sin\left(a+b-a\right)\)
\(\Leftrightarrow sina.cos\left(a+b\right)=sinb\)
b.
\(\dfrac{2sina}{cosa}=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}\Leftrightarrow2sina.cos\left(a+b\right)=cosa.sin\left(a+b\right)\)
\(\Leftrightarrow sin\left(2a+b\right)+sin\left(-b\right)=\dfrac{1}{2}sin\left(2a+b\right)+\dfrac{1}{2}sinb\)
\(\Leftrightarrow\dfrac{1}{2}sin\left(2a+b\right)=\dfrac{3}{2}sinb\)
\(\Leftrightarrow sin\left(2a+b\right)=3sinb\)
Chứng minh đẳng thức: \(\dfrac{tan\left(\alpha-\dfrac{\pi}{2}\right).cos\left(\dfrac{3\pi}{2}+\alpha\right)-sin^3\left(\dfrac{7\pi}{2}-\alpha\right)}{cos\left(\alpha-\dfrac{\pi}{2}\right).tan\left(\dfrac{3\pi}{2}+\alpha\right)}=sin^2\alpha\)
\(VT=\dfrac{-tan\left(\dfrac{\pi}{2}-a\right)cos\left(2\pi-\dfrac{\pi}{2}+a\right)-sin^3\left(4\pi-\dfrac{\pi}{2}-a\right)}{cos\left(\dfrac{\pi}{2}-a\right)tan\left(2\pi-\dfrac{\pi}{2}+a\right)}\)
\(=\dfrac{-cota.sina+sin^3\left(\dfrac{\pi}{2}+a\right)}{sina.\left(-cota\right)}=\dfrac{-cosa+cos^3a}{-cosa}=1-cos^2a=sin^2a\)
Cho \(cos\alpha = \frac{1}{3}\) và \( - \frac{\pi }{2} < \alpha < 0\). Tính
\(\begin{array}{l}a)\;sin\alpha \\b)\;sin2\alpha \\c)\;cos\left( {\alpha + \frac{\pi }{3}} \right)\end{array}\)
a, Ta có: \({\sin ^2}x + co{s^2}x = 1\)
\(\begin{array}{l} \Leftrightarrow {\sin ^2}\alpha + {\left( {\frac{1}{3}} \right)^2} = 1\\ \Leftrightarrow \sin \alpha = \pm \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}} = \pm \frac{{2\sqrt 2 }}{3}\end{array}\)
Vì \( - \frac{\pi }{2} < \alpha < 0\) nên \(sin\alpha < 0 \Rightarrow \sin \alpha = - \frac{{2\sqrt 2 }}{3}\).
\(b)\;\,sin2\alpha = 2sin\alpha .cos\alpha = 2.\left( { - \frac{{2\sqrt 2 }}{3}} \right).\frac{1}{3} = - \frac{{4\sqrt 2 }}{9}\)
\(c)\;cos(\alpha + \frac{\pi }{3}) = cos\alpha .cos\frac{\pi }{3} - sin\alpha .sin\frac{\pi }{3}\)\( = \frac{1}{3}.\frac{1}{2} - \left( { - \frac{{2\sqrt 2 }}{3}} \right).\frac{{\sqrt 3 }}{2} = \frac{{2\sqrt 6 + 1}}{6}\).
Chứng minh các hệ thức sau :
a) \(\sin\alpha+\sin\left(\alpha+\dfrac{14}{3}\pi\right)+\sin\left(\alpha-\dfrac{8}{3}\pi\right)=0\)
b) \(\dfrac{\sin4a}{1+\cos4a}.\dfrac{\cos2a}{1+\cos2a}=\cot\left(\dfrac{3}{2}\pi-a\right)\)
c) \(\left(\cos a-\cos b\right)^2-\left(\sin a-\sin b\right)^2=-4\sin^2\dfrac{a-b}{2}\cos\left(a+b\right)\)
d) \(\sin^2\left(45^0+\alpha\right)-\sin^2\left(30^0-\alpha\right)-\sin15^0\cos\left(15^0+2\alpha\right)=\sin2\alpha\)
1.Cho \(\alpha,\beta\left(\alpha\ne\beta\right)\in\left(0;\dfrac{\pi}{2}\right)\)và thỏa mãn điều kiện \(\dfrac{cosx-cos\alpha}{cosx-cos\beta}=\dfrac{sin^2\alpha cos\beta}{sin^2\beta cos\alpha}\)
(giả sử \(x\) xác định). Chứng minh\(tan^2\dfrac{x}{2}=tan^2\dfrac{\alpha}{2}tan^2\dfrac{\beta}{2}\)
2. Giải hệ phương trình \(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\end{matrix}\right.\)
3. Cho ba số thực dương a, b, c thỏa mãn \(\dfrac{1}{a+2}+\dfrac{1}{b+3}+\dfrac{1}{c+4}=1\). Tìm Min của biểu thức \(P=a+b+c+\dfrac{4}{\sqrt[3]{a\left(b+1\right)\left(c+2\right)}}+3\)
4. Tìm m để hệ bất phương trình \(\left\{{}\begin{matrix}x^2-5x+9\le\left|x-6\right|\\x^2+2x-3m^2+4\left|m\right|-4\le0\end{matrix}\right.\)
2.
ĐK: \(2x-y\ge0;y\ge0;y-x-1\ge0;y-3x+5\ge0\)
\(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\left(1\right)\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(1-y\right)\sqrt{2x-y}+y-1+2x-y-1-\left(2x-y-1\right)\sqrt{y}=0\)
\(\Leftrightarrow\left(1-y\right)\left(\sqrt{2x-y}-1\right)+\left(2x-y-1\right)\left(1-\sqrt{y}\right)=0\)
\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(1+\sqrt{y}\right)+\left(\sqrt{2x-y}-1\right)\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}+1\right)=0\)
\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(\sqrt{y}+\sqrt{2x-y}+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2x-1\end{matrix}\right.\) (Vì \(\sqrt{y}+\sqrt{2x-y}+2>0\))
Nếu \(y=1\), khi đó:
\(\left(1\right)\Leftrightarrow x-5=\sqrt{-x}+\sqrt{-3x+6}\)
Phương trình này vô nghiệm
Nếu \(y=2x-1\), khi đó:
\(\left(1\right)\Leftrightarrow2x^2-5x-1=\sqrt{x-2}+\sqrt{4-x}\) (Điều kiện: \(2\le x\le4\))
\(\Leftrightarrow2x\left(x-3\right)+x-3+1-\sqrt{x-2}+1-\sqrt{4-x}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1\right)=0\)
Ta thấy: \(1+\sqrt{x-2}\ge1\Rightarrow-\dfrac{1}{1+\sqrt{x-2}}\ge-1\Rightarrow1-\dfrac{1}{1+\sqrt{x-2}}\ge0\)
Lại có: \(\dfrac{1}{1+\sqrt{4-x}}>0\); \(2x>0\)
\(\Rightarrow\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1>0\)
Nên phương trình \(\left(1\right)\) tương đương \(x-3=0\Leftrightarrow x=3\Rightarrow y=5\)
Ta thấy \(\left(x;y\right)=\left(3;5\right)\) thỏa mãn điều kiện ban đầu.
Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(3;5\right)\)
tính F=\(\sin^2\dfrac{\pi}{6}+\sin^2\dfrac{2\pi}{6}+...+\sin^2\dfrac{5\pi}{6}+\sin^2\pi\)
2/ biết \(\sin\beta=\dfrac{4}{5},0< \beta< \dfrac{\pi}{2}\) giá trị của biểu thúc a=\(\dfrac{\sqrt{3}\sin\left(\alpha+\beta\right)-\dfrac{4\cos\left(\alpha+\beta\right)}{\sqrt{3}}}{\sin\alpha}\)
Ta có \(F=sin^2\dfrac{\pi}{6}+...+sin^2\pi=\left(sin^2\dfrac{\pi}{6}+sin^2\dfrac{5\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+sin^2\dfrac{4\pi}{6}\right)+\left(sin^2\dfrac{3\pi}{6}+sin^2\pi\right)=\left(sin^2\dfrac{\pi}{6}+cos^2\dfrac{\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+cos^2\dfrac{2\pi}{6}\right)+\left(1+0\right)=1+1+1=3\)