\(\sin a\cdot\cos a=\dfrac{\left(sina+cosa\right)^2-1}{2}=\dfrac{\dfrac{5}{4}-1}{2}=\dfrac{1}{8}\)
\(\left(sina-cosa\right)^2=1-2\cdot sina\cdot cosa=1-\dfrac{1}{4}=\dfrac{3}{4}\)
nên \(\left[{}\begin{matrix}sina-cosa=\dfrac{3}{4}\\sina-cosa=-\dfrac{3}{4}\end{matrix}\right.\)