Giá trị a2+b2 biết
\(\frac{a}{b}\)=\(\frac{2.1}{2.8}\)và 5a - 4b =-1
Cho ba số thực dương a,b,c thỏa mãn a 2 + b 2 + c 2 - 2 a + 4 b - 6 c = 10 và a + c=2 . Tính giá trị biểu thức P = 3a + 2b + c khi Q = a 2 + b 2 + c 2 - 14 a - 8 b + 18 c đạt giá trị lớn nhất.
A. 10
B. -10
C. 12
D. -12
Đáp án D
Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu (S) và mặt phẳng (P) sao cho KM lớn nhất
\(\frac{a}{b}=\frac{2,1}{2,7}\),5a-4b=-1.giá trị của (a-b)2
Ta có: \(\frac{a}{b}=\frac{2,1}{2,7}\) => \(\frac{a}{2,1}=\frac{b}{2,7}\) => \(\frac{5a}{10,5}=\frac{4b}{10,8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{5a}{10,5}=\frac{4b}{10,8}=\frac{5a-4b}{10,5-10,8}=\frac{-1}{-0,3}=\frac{1}{0,3}\)
=> 5a=\(\frac{1}{0,3}.10,5=35\) => a=7
4b=\(\frac{1}{0,3}.10,8=36\) => b=9
Vậy a=7; b=9
ta có :\(\frac{a}{b}\) =\(\frac{2,1}{2,7}\) =>\(\frac{a}{2,1}\) =\(\frac{b}{2,7}\)
=>\(\frac{5a}{10,5}\) =\(\frac{4b}{10,8}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{5a}{10,5}\) =\(\frac{4b}{10,8}\) =\(\frac{5a-4b}{10,5-10,8}\) =\(\frac{-1}{-0,3}\)
\(\frac{a}{2,1}\) =\(\frac{1}{0,3}\) => a=7
\(\frac{b}{2,7}\) =\(\frac{1}{0,3}\) =>b=9
=>(a-b)2= (7-9)2=(-2)2=4
Cho a,b là các số thực thỏa mãn a 2 + b 2 > 1 và log a 2 + b 2 a + b ≥ 1 . Giá trị lớn nhất của biểu thức P = 2a + 4b - 3 bằng
A. 1 10
B. 10 2
C. 10
D. 2 10
Ta có
Ta có
Áp dụng bất đẳng thức Bunhiacopxky, ta có
Do đó
Dấu "x" xảy ra
Chọn C.
Ta thấy (1) là hình tròn tâm
Ta có Xem đây là phương trình đường thẳng.
Để đường thẳng và hình tròn có điểm chung
Cho hai số thực a,b thỏa mãn điều kiện a 2 + b 2 > 1 và log a 2 + b 2 a + b ≥ 1 . Giá trị lớn nhất của biểu thức P = 2a + 4b – 3 là
A. 2 10
B. 10
C. 10 2
D. 1 10
cho các số a,b,c thõa mãn 5a=4b=2c và a-b+c=-18. tính giá trị của biểu thức \(P=\left(\frac{2}{a}+\frac{5}{b}+\frac{5}{c}\right)^{2017}\)
Cho biết (a+b) =1 và ab=-12 giá trị của a2 +b2 bằng
\(a^2+b^2=\left(a+b\right)^2-2ab\)
=1+24
=25
1 Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
2 Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).
3 Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
1,Giá trị x thỏa mãn : \(\frac{x}{-8}=\frac{-18}{x}\)
2, Tập hợp giá trị x nguyên thỏa mãn : | 2x-7| + | 2x + 1 | \(\le\) 8
3,Cho \(\frac{a}{b}=\frac{2,1}{2,7}\) ; 5a- 4b = -1 . Giá trị \(\left(a-b\right)^2\) là
4, Cho \(\frac{a}{b}=\frac{9,6}{12,8};a^2+b^2=25\) . Giá trị | a + b| là ......
Bài 1:
\(\frac{x}{-8}=\frac{-18}{x}\)
\(\Rightarrow x^2=144\)
\(\Rightarrow x=\pm12\)
Vậy \(x=\pm12\)
Bài 3:
Giải:
Ta có: \(\frac{a}{b}=\frac{2,1}{2,7}\Rightarrow\frac{a}{2,1}=\frac{b}{2,7}\Rightarrow\frac{a}{21}=\frac{b}{27}\Rightarrow\frac{a}{7}=\frac{b}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{7}=\frac{b}{9}=\frac{5a}{35}=\frac{4b}{36}=\frac{5a-4b}{35-36}=\frac{-1}{-1}=1\)
+) \(\frac{a}{7}=1\Rightarrow a=7\)
+) \(\frac{b}{9}=1\Rightarrow b=9\)
\(\Rightarrow\left(a-b\right)^2=\left(7-9\right)^2=\left(-2\right)^2=4\)
Vậy \(\left(a-b\right)^2=4\)
Bài 4:
Giải:
Ta có: \(\frac{a}{b}=\frac{9,6}{12,8}\Rightarrow\frac{a}{9,6}=\frac{b}{12,8}\Rightarrow\frac{a}{96}=\frac{b}{128}\Rightarrow\frac{a}{3}=\frac{b}{4}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\)
\(\Rightarrow a=3k,b=4k\)
Mà \(a^2+b^2=25\)
\(\Rightarrow\left(3k\right)^2+\left(4k\right)^2=25\)
\(\Rightarrow9.k^2+16.k^2=25\)
\(\Rightarrow25k^2=25\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow a=3;b=4\)
+) \(k=-1\Rightarrow a=-3;b=-4\)
\(\Rightarrow\left|a+b\right|=\left|3+4\right|=\left|-3+-4\right|=7\)
Vậy \(\left|a+b\right|=7\)
Áp dụng BĐT
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)Ta có:
\(\left|2x-7\right|+\left|2x+1\right|=\left|2x-7\right|+\left|-2x-1\right|\ge\left|2x-7+\left(-2x-1\right)\right|=8\)
Mà \(\left|2x-7\right|+\left|2x+1\right|\ge\)8 nên không có số nguyên x nào thỏa mãn đề ra
Biết rằng các số thực a, b thay đổi sao cho hàm số f x = − x 3 + x + a 3 + x + b 3 đồng biến trên khoảng − ∞ ; + ∞ . Tìm giá trị nhỏ nhất của biểu thức P = a 2 + b 2 − 4 a − 4 b + 2.
A. -4
B. -2
C. 0
D. 2
Đáp án B
Ta có
f ' x = 3 x + a 2 + x + b 2 − x 2 = 3 x 2 + 2 a + b x + a 2 + b 2
Để hàm số luôn đồng biến trên − ∞ ; + ∞
thì Δ ' = a + b 2 − a 2 + b 2 ≤ 0 ⇔ a b ≤ 0
Ta có
P = a 2 + b 2 − 4 a − 4 b + 2 = a + b − 2 2 − 2 a b − 2 ≥ − 2.
Dâu bằng xảy ra khi a + b = 2 a b = 0 ⇔ a = 2 b = 0 hoặc ngược lại.