b) 5 mũ 2 + (28-3x)=5 mũ 3
a) (-2)mũ 3 . 3 mũ 3 . 5 mũ 3 . 7.8 / 2 . 2 mũ 4 . 5 mũ 3 . 14
b) 5 mũ 2 . 6 mũ 11 . 16 mũ 2 + 12 mũ 6 . 15 mũ 2 / 2 - 6 mũ 12 . 10 mũ 4 - 81 mũ 2 . 960 mũ 3
c) 25 mũ 28 + 25 mũ 24 + .......+ 25 mũ 4 +1 / 25 mũ 30 + 25 mũ 28 + .........+ 25 mũ 2 + 1
=> Ai giải được bài này thì quá giỏi luôn
Thực hiện phép tính:
1. ( -a )mũ 7 : a mũ 5
2. 28 y mũ 4 z mũ 3 : 14 y mũ 3 z bình
3. 25 a bình bc bình : 5abc
4. x mũ a+ 2 y mũ b : x bình y
5. x mũ a y mũ a + 1 : 3x mũ a-1 y mũ a
Các bác giúp e vs, hứa sẽ tick, e cảm ơn nhiều!!!!!!!!!!!!!!!!
1. \(\left(-a\right)^7\) : \(a^5\) = \(\left(-a\right)^2\) = a
2. 28 \(y^4z^3\) : 14 \(y^3z^2\) = 2yz
3. 25\(a^2bc^2\) : 5abc = 5ac
S=1+5+5 mũ 2+5 mũ 3+...+5 mũ 28
a. Chứng minh S chia hết cho 3
b. Tìm n biết:45+1=5 mũ n
a) \(S=1+5+5^2+5^3+...+5^{28}\)
\(S=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{27}+5^{28}\right)\)
\(S=1\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)
\(S=\left(1+5^2+...+5^{27}\right).6⋮3\left(dpcm\right)\)
b) \(S=1+5+5^2+5^3+...+5^{28}\)
\(\Rightarrow5S=5+5^2+5^3+5^4+...+5^{29}\)
\(\Rightarrow5S-S=\left(5+5^2+5^3+5^4+...+5^{29}\right)-\left(1+5+5^2+5^3+...+5^{28}\right)\)
\(\Rightarrow4S=5^{29}-1\)
\(\Rightarrow4S+1=5^{29}-1+1\)
\(\Rightarrow4S=5^{29}=5^n\)
\(\Rightarrow n=29\)
a) \(S=1+5+5^2+5^3+...+5^{28}\)
\(\Rightarrow S=\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)
\(\Rightarrow S=6+5^2.6+...+5^{27}.6\)
\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮6\)
\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮3\)
\(\Rightarrow dpcm\)
b) Bạn xem lại đề
Bài 2 :
a, ( 7 mũ x - 11 mũ 3 ) = 2 mũ 5 × 5 mũ 2 + 200
b, (3x - 2 mũ 10 ) = (3x - 2) mũ 7
1. 6 X mũ 3 -8 =40
2. 4 X mũ 5 +15=47
3. 2 X mũ 3-4=12
4. 5 X mũ 3-5=0
5. (X -5) mũ 2016 = (X-5) mũ 2018
6. (3X -2) mũ 20= (3X-1) mũ 20
7. (3X -1) mũ 10 = (3X-1) mũ 20
8. (2X -1) mũ 50 = 2X-1
9. (X phần 3 -5) mũ 2000= ( X phần 3-5) mũ 2008
1. \(6x^3-8=40\\ 6x^3=48\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
2. \(4x^5+15=47\\ 4x^5=32\\ x^5=8\\ \Rightarrow x\in\varnothing\left(\text{vì }x\in N\right)\)Vậy x ∈ ∅
3. \(2x^3-4=12\\ 2x^3=16\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
4. \(5x^3-5=0\\ 5x^3=5\\ x^3=1\\ \Rightarrow x=1\)Vậy x = 1
5. \(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)Vậy \(x\in\left\{5;6\right\}\)
6. \(\left(3x-2\right)^{20}=\left(3x-1\right)^{20}\\ \Rightarrow3x-2=3x-1\\ 3x-3x=2-1\\ 0=1\left(\text{vô lí}\right)\)Vậy x ∈ ∅
7. \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\\ \left(3x-1\right)^{10}=\left[\left(3x-1\right)^2\right]^{10}\\ \Rightarrow\left(3x-1\right)^2=3x-1\\ \left(3x-1\right)^2-\left(3x-1\right)=0\\ \left(3x-1\right)\left[\left(3x-1\right)-1\right]=0\\ \left(3x-1\right)\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=1\\3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(\text{loại vì }x\in N\right)\\x=\frac{2}{3}\left(\text{loại vì }x\in N\right)\end{matrix}\right.\)Vậy x ∈ ∅
8. \(\left(2x-1\right)^{50}=2x-1\\ \left(2x-1\right)^{50}-\left(2x-1\right)=0\\ \left(2x-1\right)\left[\left(2x-1\right)^{49}-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^{49}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=1\\2x-1=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\left(\text{loại vì }x\in N\right)\\x=1\left(t/m\right)\end{matrix}\right.\)Vậy x = 1
9. \(\left(\frac{x}{3}-5\right)^{2000}=\left(\frac{x}{3}-5\right)^{2008}\\ \left(\frac{x}{3}-5\right)^{2008}-\left(\frac{x}{3}-5\right)^{2000}=0\\ \left(\frac{x}{3}-5\right)^{2000}\left[\left(\frac{x}{3}-5\right)^8-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(\frac{x}{3}-5\right)^{2000}=0\\\left(\frac{x}{3}-5\right)^8=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}-5=0\\\frac{x}{3}-5=1\\\frac{x}{3}-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}=5\\\frac{x}{3}=6\\\frac{x}{3}=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\cdot3=15\\x=6\cdot3=18\\x=4\cdot3=12\end{matrix}\right.\)Vậy \(x\in\left\{15;18;12\right\}\)
\(1.6x^3-8=40\\ \Leftrightarrow6x^3=48\\ \Leftrightarrow x^3=8\Leftrightarrow x^3=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
\(2.4x^3+15=47\) (T nghĩ đề là mũ 3)
\(\Leftrightarrow4x^3=32\Leftrightarrow x^3=8=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 3, 4 tương tự nhé.
\(5.\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Leftrightarrow\left(x-5\right)^{2018}-\left(x-5\right)^{2016}=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left[\left(x-5\right)^2-1\right]=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left(x-5-1\right)\left(x-5+1\right)=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left(x-6\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)^{2016}=0\\x-6=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x=6\\x=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)
Vậy \(x\in\left\{4;5;6\right\}\)
bài 1; sắp sếp các đa thức sau theo luỹ thừa giảm dần của biến và thực hiện phép tính chia
a, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
b, ( x mũ 3 + 2x mũ 4 - 5x mũ 2 - 3 - 3x ) : ( x mũ 2 - 3 )
c, ( 5x mũ 2 + 15 - 3x mũ 2 - 9x ) : ( 5 - 3x )
d, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )
e, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
Bài 2: Tìm x, biết
a) (x+3) mũ 2 - (x-4)(x+8) = 1
b) (x+3)(x mũ 2 - 3x + 9) -x(x-2)(x+2) = 15
c) (x-2) mũ 2 - (x+3) mũ 2 - 4(x+1) = 5
d) (2x-3)(2x+3) - (x-1) mũ 2 - 3x(x-5) = -44
e) (x-2) mũ 3 - (x-3)(x mũ 2 + 3x + 9) + 6(x+1) mũ 2 = 49
f) 5x(x-3) mũ 2 - 5(x-1) mũ 3 + 15(x+2)(x-2) = 5
g) (x+3) mũ 3 - x(3x+1) mũ 2 + (2x+1)(4x mũ 2 - 2x + 1) - 3x mũ 2 = 42
a) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2+4x-32\right)-1=0\)
\(\Leftrightarrow2x=-40\)
\(\Rightarrow x=-20\)
b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=-12\)
\(\Rightarrow x=-3\)
c) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-\left(4x+4\right)=5\)
\(\Leftrightarrow-14x=14\)
\(\Rightarrow x=-1\)
d) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)
\(\Leftrightarrow17x=-34\)
\(\Rightarrow x=-2\)
e) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Leftrightarrow24x=24\)
\(\Rightarrow x=1\)
f) \(5x\left(x-3\right)^2-5\left(x-1\right)^3+15\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-60=5\)
\(\Leftrightarrow30x=60\)
\(\Rightarrow x=2\)
g) \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=42\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=42\)
\(\Leftrightarrow26x=14\)
\(\Rightarrow x=\frac{7}{13}\)
a,(3x+y-z)-94x-2y+6z)
b,(4x mũ 2 + x mũ 2 y -5 y mũ 2 ) - (5/3 x mũ 3 -6xy mũ 2 -x mũ 2 y )
a, \(=-91x-y+5z\)
b, \(=4x^2+x^2y-5y^2-\dfrac{5}{3}x^3+6xy^2+x^2y\)
\(=4x^2+2x^2y-5y^2-\dfrac{5}{3}x^3+6xy^2\)
Tìm số nguyên x biết :
a, -28 - 7.|-3x + 15| = -70
b, |18 - 2 |-x + 5|| = 12
c, 12 - 2.(-x + 3)mũ 2 = -38
d, -20 + 3.(2x +1)mũ 3 = -101
a) \(-28-7|-3x+15|=-70\)
\(\Rightarrow7|-3x+15|=42\)
\(\Rightarrow|-3x+15|=6\)
\(\Rightarrow|3\left(5-x\right)|=6\)
\(\Rightarrow|3|.|5-x|=6\)
\(\Rightarrow3|5-x|=6\)
\(\Rightarrow|5-x|=2\)
\(\Rightarrow\orbr{\begin{cases}5-x=2\\5-x=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=7\end{cases}}\)
Vậy \(x\in\left\{3;7\right\}\)
b) \(|18-2|-x+5||=12\)
\(\Rightarrow\orbr{\begin{cases}18-2|-x+5|=12\\18-2|-x+5|=-12\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2|5-x|=6\\2|5-x|=30\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}|5-x|=3\left(1\right)\\|5-x|=15\left(2\right)\end{cases}}\)
Từ \(\left(1\right):\Rightarrow\orbr{\begin{cases}5-x=3\\5-x=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=8\end{cases}}\)
Từ \(\left(2\right):\Rightarrow\orbr{\begin{cases}5-x=15\\5-x=-15\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-10\\x=20\end{cases}}\)
Vậy \(x\in\left\{2;8;-10;20\right\}\)
c) \(12-2\left(-x+3\right)^2=-38\)
\(\Rightarrow2\left(3-x\right)^2=50\)
\(\Rightarrow\left(3-x\right)^2=100\)
\(\Rightarrow\orbr{\begin{cases}3-x=10\\3-x=-10\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-7\\x=13\end{cases}}\)
Vậy \(x\in\left\{-7;13\right\}\)
d) \(-20+3\left(2x+1\right)^3=-101\)
\(\Rightarrow3\left(2x+1\right)^3=-81\)
\(\Rightarrow\left(2x+1\right)^3=-27\)
\(\Rightarrow2x+1=-3\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
Vậy \(x=-2\)
Trả lời:
a, -28 - 7| -3x + 15 | = -70
=> 7| -3x + 15 | = 42
=> | -3x + 15 | = 6
=> -3x + 15 = 6 hoặc -3x + 15 = -6
=> -3x = -9 -3x = -21
=> x = 3 x = 7
Vậy x = 3; x = 7
b, | 18 - 2 | -x + 5 || = 12
=> 18 - 2| -x + 5 | = 12 hoặc 18 - 2| -x + 5 | = -12
=> 2 | -x + 5 | = 6 hoặc 2 | -x + 5 | = 30
=> | -x + 5 | = 3 hoặc | -x + 5 | = 15
=> -x + 5 = 3 hoặc -x + 5 = -3 hoặc -x + 5 = 15 hoặc -x + 5 = -15
=> x = 2 x = 8 x = -10 x = 20
Vậy x \(\in\){ 2; 8; -10; 20 }
c, 12 - 2.( -x + 3 )2 = -38
=> 2.( -x + 3 )2 = 50
=> ( -x + 3 )2 = 25
=> -x + 3 = 5 hoặc -x + 3 = -5
=> x = -2 x = 8
Vậy x = -2; x = 8
d, -20 + 3.( 2x + 1 )3 = -101
=> 3.( 2x + 1)3 = -81
=> ( 2x + 1 )3 = -27
=> 2x + 1 = -3
=> 2x = -4
=> x = -2
Vậy x = -2
=> x = 1