Cho tg ABC. Gọi I là trung điểm BC. Trên 2 cạnh AB, AC lần lượt lấy 2 điểm E và F. C/M: Sabc >= 2Sief
cho tam giác ABC. Gọi D là trung điểm của cạnh BC. Trên hai cạnh AB và AC lần lượt lấy hai điểm E và F. Chứng minh rằng SDEF<=SABC/2. Với vị trí nào của E và F thì SDEF đạt giá trị lớn nhất (S= diện tích)
Cho tam giác ABC. Trên các cạnh AB và BC lấy các điểm E, F sao cho AE = 3/4 AB ; BF = 2/5 BC. Gọi H, I lần lượt là trung điểm AC và EH. Chứng minh ba điểm A, I, F thẳng hàng.
Cho tam giác vuông ABC (A = 90°). Lấy M bất kì trên cạnh BC. Gọi E, F lần lượt là các điểm đối xứng với M qua AB và AC. Gọi I, K lần lượt là giao điểm của MẸ với AB và MF với AC. Chứng minh:
a) MIAK là hình chữ nhật.
b) A là trung điểm của EF.
a: M đối xứng E qua AB
=>AB là đường trung trực của ME
=>AB\(\perp\)ME tại I và I là trung điểm của ME
Ta có: M đối xứng F qua AC
=>AC là đường trung trực của MF
=>AC\(\perp\)MF tại K và K là trung điểm của MF
Xét tứ giác AIMK có
\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)
=>AIMK là hình chữ nhật
b: Ta có: AKMI là hình chữ nhật
=>AK//MI và AK=MI; KM//AI và KM=AI
Ta có: MI//AK
I\(\in\)ME
Do đó: IE//AK
Ta có: AK=IM
IM=IE
Do đó: AK=IE
Ta có: AI=MK
MK=KF
Do đó: AI=KF
Ta có: AI//MK
K\(\in\)MF
Do đó: AI//KF
Xét tứ giác AKIE có
AK//IE
AK=IE
Do đó: AKIE là hình bình hành
=>KI//AE và KI=AE
Xét tứ giác AIKF có
AI//KF
AI=KF
Do đó: AIKF là hình bình hành
=>KI//AF và KI=AF
Ta có: KI//AF
KI//AE
AE,AF có điểm chung là A
Do đó: E,A,F thẳng hàng
Ta có: KI=AE
KI=AF
Do đó: AE=AF
mà E,A,F thẳng hàng
nên A là trung điểm của EF
1,Cho tam giác ABC. Trên cạnh AC lấy điểm E cố định , trên cạnh BC lấy điểm F cố định ( E khác A và C; F khác B và C). Trên cạnh AB lấy điểm D di động ( D khác A và B) . Hãy xác định vị trí điểm D trên đường thẳng AB sao cho DE^2+DF^2 có giá trị nhỏ nhất.
2,Cho tam giác ABC vuông tại A có đường cao AH. Gọi I là tâm đg tròn nội tiếp tam giác, E,F,D lần lượt là hình chiếu của I trên AC, AB,BC.Gọi M là trung điểm AC.MI cắt AB tại N.FD cắt AH tại P. Chứng minh AN=AP
cho tam giác abc d là trung điểm bc tren 1 cạnh ab, ac lần lượt lấy e, f CM Sdef >=1/2 Sabc
de lam chi can chi doi 2 nam nua la em tra loi dc a
☺☺☺
B1, cho tam giác abc, d là một điểm trên cạnh BC. Qua D kẻ đường thẳng // với AB cắt AC ở E. Trên AB lấy điểm F sao cho AF=DE. Gọi I là trung điểm của AD. CMR:
a,DF=AE
b,E và F đối xứng nhau qua I
B2, Cho hbh ABCD lấy E và F lần lượt là trung điểm Ab và CD,lấy M thuộc tia đối của tia AD sao cho AM=AD. CM các tứ giác sau là hbh:
a,Tứ giác AEFD
b,Tứ giác AMEF
c,Tứ giác AMBC
Bài1
a) Xét tg AFDE có :
AF=DE (gt)
AF//DE ( vì AB//DE )
⇒ tg AFDE là hbh
⇒ DF=AE ( t/c hbh ) ( đpcm )
b) Vì AFDE là hbh nên :
⇒ EF cắt AD tại trung đ' mỗi đg
Mà I là trung đ' AD
⇒ I là trung đ' EF
⇒ E và F đối xứng vs nhau tại I (đpcm )
Cho tam giác ABC. Trên hai cạnh AB, AC lấy hai điểm E, F sao cho EF ∥ BC. Gọi H, G lần lượt là hình chiếu vuông góc của E, F lên BC. Gọi M, N lần lượt là trung điểm của BC và đường cao AI. Chứng minh rằng BN đi qua trung điểm của EH và MN đi qua trung điểm của HF.
Gọi P là giao của BN với EH; Q là giao của MN với HF; K là giao của MN với EF
Ta có
\(EH\perp BC;AI\perp BC\)=> EH//AI \(\Rightarrow\frac{PE}{NA}=\frac{PH}{NI}\) (Talet) \(\Rightarrow\frac{PE}{PH}=\frac{NA}{NI}=1\Rightarrow PE=PH\)
=> BN đi qua trung điểm P của EH
Ta có
EF//BC (gt) => KF//HM \(\Rightarrow\frac{QK}{QM}=\frac{QF}{QH}=\frac{KF}{HM}\) (Talet) => KH//FM
Xét tứ giác KFMH có
KF//HM; KH//FM => KFMH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> KF=HM (Trong hình bình hành các cạnh đối bằng nhau)
\(\Rightarrow\frac{QF}{QH}=\frac{KF}{HM}=1\Rightarrow QF=QH\)
=> MN đi qua trung điểm Q của HF
cho tam giác ABC (AB>AC) trên cạnh AB lấy điểm E sao cho BE = AC gọi I;D;F lần lượt là trung điểm các đoạn thẳng CE;AE;BC chứng minh
a. tam giác IDF là tam giác cân
b.góc BAC = 2 lần gócIDF
a: Xét ΔEBC có
I là trung điểm của EC
F là trung điểm của BC
Do đó: IF là đường trung bình của ΔEBC
Suy ra: \(IF=\dfrac{EB}{2}\left(1\right)\)
Xét ΔAEC có
I là trung điểm của EC
D là trung điểm của AE
Do đó: ID là đường trung bình của ΔAEC
Suy ra: \(ID=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra IF=ID
hay ΔIDF cân tại I
Cho tam giác abc, ab=ac. Trên cạnh ab và ac lần lượt lấy 2 điểm m và n sao cho am=an. Gọi e và d lần lượt là trung điểm của mn và bc. Cmr: a d e thẳng hàng
Xét tam giác AMN có AM = AN nên tam giác AMN cân tại A.
Vậy thì trung tuyến AD chính là phân giác của góc \(\widehat{MAN}\)
Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Vậy thì trung tuyến AE chính là phân giác của góc \(\widehat{BAC}\)
Từ đó ta có D, E cùng thuộc tia phân giác của góc A hay A, D, E thẳng hàng.