1. Tìm tập giá trị của biểu thức x-a biết rằng \(\left|2x+4-2a\right|+\left|x-2+a\right|\le3\)
Tìm tập giá trị của biểu thức x-a biết rằng \(\left|2x+4-2a\right|+\left|x-2+a\right|\le3\)
Tìm tập giá trị của biểu thức x-a biết rằng \(|2x+4-2a|+|x-2+a|\le3.\)
\(\left|2x+4-2x\right|+\left|x-2+a\right|\le3\)
đặt a-2=y
=> |2x-y|+|x+y| =<3
=> Tập GT \(\left(\frac{-1}{2};\frac{3}{2}\right)\)
ai giúp em câu này với, được không ạ
Cho biểu thức A = \(\left(\dfrac{4x}{x+2}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\)
a) Tìm x để giá trị của biểu thức biểu thức A được xác định.
b) Rút gọn A.
c) Tìm giá trị của A biết x2 + 2x = 15
d) Tìm x biết |A| > A
Cho biểu thức A =
a) Tìm x để giá trị của biểu thức biểu thức A được xác định.
b) Rút gọn A.
c) Tìm giá trị của A biết x2 + 2x = 15
d) Tìm x biết |A| > A
1.Cho A=\(\dfrac{2x+1}{\left(x-4\right)\left(x-3\right)}-\dfrac{x+3}{x-4}+\dfrac{2x+1}{x-3}\)
a.Rút gọn biểu thức A
b.Tính giá trị của A biết \(x^2+20=9x\)
2.Tìm đa thức thương vfa đa thức dư trong phép chia:\(\left(2x^3-7x^2+13x+2\right):\left(2x-1\right)\)
3.Cho hình thang ABCD có góc A = góc D = 90 độ,AB=AD=\(\dfrac{1}{2}\)CD.Gọi M là trung điểm của CD.
a.Tứ giác ABCM;ABCD là hình gì?Vì sao?
b.Cho AC cắt BD tại E, AM cắt BD tại O.Gọi N là trung điểm của MC.C/m tứ giác DOEN là hình thang cân.
c.Kẻ DI vuông góc vs AC (I thuộc AC) DI cắt AM tại H.Gọi K là giao điểm của AM và DE.C/m DH=DK
(vẽ hình giúp e vs ạ, e cảm ơn)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
1. Phân tích đa thức thành nhân tử: \(4x^2-17xy+13y^2\)
2. Tìm biết: 2x(x-5)-x(3+2x)=26
3. Tính giá trị biểu thức: \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\) biết a-b=10
giúp mị ik
1. \(4x^2-17xy+13y^2=4x^2-4xy-13xy+13y^2=4x\left(x-y\right)-13y\left(x-y\right)=\left(x-y\right)\left(4x-13y\right)\)
2. \(2x\left(x-5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
3. \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)
\(\Leftrightarrow\left(2a-3b\right)^2-2\left(2a-3b\right)\left(2b-3a\right)+\left(2b-3a\right)^2=\left(2a-3b-2b+3a\right)^2=\left(5a-5b\right)^2\)
\(=25\left(a-b\right)^2=25\cdot100=2500\)
Cho biểu thứ :\(P:\left(\dfrac{x-1}{x-3}+\dfrac{2}{x-3}+\dfrac{x^2+3}{9-x^2}\right):\left(\dfrac{2x-1}{2x+1-1}\right)\)
a) Rút gọn biểu thức P
b) Tính giá trị của P biết \(\left|x+1\right|=\dfrac{1}{2}\)
c) Tìm x để \(P=\dfrac{x}{2}\)
d) Tìm giá trị nguyen của x để P có giá trị nguyên
Bài 1. Tìm giá trị lớn nhất của biểu thức:
\(A=-2x^2-10y^2+4xy+4x+4y+2013\)
Bài 2. tìm giá trị nhỏ nhát của biểu thức \(A=a^4-2a^3+2a^2-2a+2\)
Bài 3: Cho x,y \(\in Z\)chứng minh rằng;
\(N=\left(x-y\right).\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)là số chính phương
Bài 4. Cho các số a,b dương thỏa mãn : \(a^3+b^3=3ab-1\)
Chứng minh rằng \(a^{2018}+b^{2019}=2\)
Bài 5. Chứng minh rằng \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)với mọi \(n\inℕ^∗\)
1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2
2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi a = 1
3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)
4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)
Do đó \(a^{2018}+b^{2019}=1+1=2\)
5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)