Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hán Bình Nguyên
Xem chi tiết
Nguyễn Tấn Thuận
Xem chi tiết
Tran Le Khanh Linh
19 tháng 4 2020 lúc 10:43

\(\left|2x+4-2x\right|+\left|x-2+a\right|\le3\)

đặt a-2=y

=> |2x-y|+|x+y| =<3

=> Tập GT \(\left(\frac{-1}{2};\frac{3}{2}\right)\)

Khách vãng lai đã xóa
Nguyễn Tấn Thuận
20 tháng 4 2020 lúc 22:47

ai giúp em câu này với, được không ạ

Khách vãng lai đã xóa
Lê Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Mai Ngọc Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2023 lúc 7:51

  loading...  

loading...  loading...  

Vũ Ngọc Thảo Nguyên
Xem chi tiết
Cô gái thất thường (Ánh...
Xem chi tiết
Ƹ̴Ӂ̴Ʒ ♐  ๖ۣۜMihikito ๖ۣ...
12 tháng 10 2018 lúc 21:00

1. \(4x^2-17xy+13y^2=4x^2-4xy-13xy+13y^2=4x\left(x-y\right)-13y\left(x-y\right)=\left(x-y\right)\left(4x-13y\right)\)

2. \(2x\left(x-5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)

3. \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)

\(\Leftrightarrow\left(2a-3b\right)^2-2\left(2a-3b\right)\left(2b-3a\right)+\left(2b-3a\right)^2=\left(2a-3b-2b+3a\right)^2=\left(5a-5b\right)^2\)

\(=25\left(a-b\right)^2=25\cdot100=2500\)

Huỳnh Thị Thanh Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2022 lúc 8:41

Đề sai rồi bạn

bùi thu linh
Xem chi tiết
Nguyễn Hải Đăng
23 tháng 10 2020 lúc 21:47

đéo biết

Khách vãng lai đã xóa
Kiệt Nguyễn
24 tháng 10 2020 lúc 9:22

1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2

2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)

Đẳng thức xảy ra khi a = 1

3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)

4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)

Do đó \(a^{2018}+b^{2019}=1+1=2\)

5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)

Khách vãng lai đã xóa