cho 2x - y = 2 tìm giá trị nhỏ nhất của biểu thức:
A =\(\sqrt{x^2+\left(y+1\right)^2}+\sqrt{x^2+\left(y-3\right)^2}\)
Tìm tất cả các giá trị của tham số m để bất pt
a) \(\left(x+m\right)m+x>3x+4\) có tập nghiệm là \(\left(-m-2;+\infty\right)\)
b) \(m\left(x-m\right)\ge x-1\) có tập nghiệm là \((-\infty;m+1]\)
c) \(m\left(x-1\right)< 2x-3\) có nghiệm
d) \(\left(m^2+m-6\right)x\ge m+1\) có nghiệm
Tìm tất cả các giá trị m để
a) \(mx+6< 2x+3m\) thỏa mãn m<2
b) \(m\left(2x-1\right)\ge2x+1\) có tập nghiệm là \([1;+\infty)\)
c) \(2x-m< 3\left(x-1\right)\) có tập nghiệm là \(\left(4;+\infty\right)\)
d) \(mx+4>0\) đúng với mọi \(\left|x\right|< 8\)
1. Biết rằng tập nghiệm của bpt \(\sqrt{2x-4}-2\sqrt{2-x}\ge\dfrac{6x-4}{5\sqrt{x^2+1}}\) là \(\left[a;b\right]\) . Tính P=3a-2b
2. Tính tổng các giá trị nguyên dương của m để tập nghiệm của bpt \(\sqrt{\dfrac{m}{72}x^2+1}< \sqrt{x}\) có chứa đúng 2 số nguyên
a) Tìm tất cả các giá trị của tham số m sao cho pt \(\left(m-1\right)^2-2\left(m+3\right)-m+2=0\) có nghiệm
b) Các giá trị m để tam thức \(f\left(x\right)=x^2-\left(m+2\right)x+8m+1\) đổi dấu 2 lần
c) Cho tam thức bậc hai \(f\left(x\right)=x^2-bx+3\). Với giá trị nào của b thì tam thức f(x) có nghiệm?
1) Xét dấu của biểu thức \(f\left(x\right)=\frac{\left(x-1\right)^5\left(2x+5\right)^{2014}}{x^9\left(-x+3\right)^{2015}}\)
2) Chứng minh rằng phương trình \(\left(m-1\right)x^2+\left(3m-2\right)x+3-2m=0\) luôn có nghiệm với mọi giá trị thực của tham số m
3) Xác định tham số m để hàm số \(y=\sqrt{\frac{-2016x^4-1}{\left(m+1\right)x^2+2\left(m+1\right)x-m-3}}\) có tập xác định D = R
tập nghiệm của bất pt
a) \(\left|4x-8\right|\le8\)
b) \(\left|x-5\right|\le4\). (số nghiệm nguyên|)
c) \(\left|2x+1\right|< 3x\) ( giá trị nguyên x thỏa mãn [-2017;2017]
d) \(\left|x+1\right|+\left|x\right|< 3\)
e) \(\left|2-x\right|+3x-1\le6\)
Giúp tui bài tập này với :
Lập bảng xét dấu các biểu thức :
\(C=\dfrac{\left(x^2-1\right)\left(x-1\right)}{\left(2x-5\right)\left(3-x\right)}\)
Với \(0\le x\le3\), \(0\le y\le1\), tìm giá trị lớn nhất của biểu thức
\(C=\left(3-x\right)\left(1-y\right)\left(4x+7y\right)\)