1.
ĐKXĐ: \(x=2\)
Xét \(x=2\), bất phương trình vô nghiệm
\(\Rightarrow\) bất phương trình đã cho vô nghiệm
\(\Rightarrow\) Không tồn tại \(a,b\) thỏa mãn
Đề bài lỗi chăng.
1.
ĐKXĐ: \(x=2\)
Xét \(x=2\), bất phương trình vô nghiệm
\(\Rightarrow\) bất phương trình đã cho vô nghiệm
\(\Rightarrow\) Không tồn tại \(a,b\) thỏa mãn
Đề bài lỗi chăng.
1. Tìm nghiệm nguyên: \(\left\{{}\begin{matrix}y-\left|x^2-x\right|-1\ge0\\\left|y-2\right|+\left|x+1\right|-1\le0\end{matrix}\right.\)
2. Tìm m để bpt \(\left|\dfrac{x^2-mx-1}{x^2-2x+3}\right|\le1\) có tập nghiệm bằng R
3. Tìm m để bpt \(x^2+6x\le m\left(\left|x+3\right|+1\right)\) có nghiệm.
Giải bpt
\(\sqrt{\dfrac{x^4+x^2+1}{x\left(x^2+1\right)}}\ge\sqrt{\dfrac{x^2+x+1}{x^2+1}}+2-\dfrac{x^2+1}{x}\)
giúp mình giải bpt vs
\(\dfrac{\left|2x-1\right|-x}{2x}>1;\dfrac{2-\left|x-2\right|}{x^2-1}\ge0;\dfrac{\sqrt{x+4}-2}{4-9x^2}\le0;\dfrac{x^2-2x-3}{\sqrt[3]{3x-1}+\sqrt[3]{4-5x}}\ge0;\)\(3x^2-10x+3\ge0;\left(\sqrt{2}-x\right)\left(x^2-2\right)\left(2x-4\right)< 0;\dfrac{1}{x+9}-\dfrac{1}{x}>\dfrac{1}{2};\dfrac{2}{1-2x}\le\dfrac{3}{x+1}\)
Cho bpt \(\sqrt{x^2-3x+m}>2x+1\) tìm m để bpt có nghiệm x ∈\(\left[0;2\right]\)
Tìm nghiệm của bpt
\(\frac{\left(\sqrt{x+1}-\sqrt{2x-1}\right)\left(\sqrt{x+1}-2\right)}{x-1}\le0\)
Cho BPT : \(\sqrt{\left(2x+1\right)\left(3-2x\right)}-4x^2+4x-m-3\le0\)
Tìm tập hợp tất cả các giá trị của m \(\in\left[a;+\infty\right]\)thì BPT có nghiệm với mọi x thuộc [ -1/2 ; 3/2 ]
Tìm tập nghiệm của bất phương trình:\(2\left(x-4\right)\sqrt{2x+1}\ge x\sqrt{x^2+1}+x^3+x^2-3x-8\)
Ai hướng dẫn mình với ạ!!
1. Hệ bpt \(\left\{{}\begin{matrix}15x-2>2x+\dfrac{1}{3}\\2\left(x-4\right)< \dfrac{3x-14}{2}\end{matrix}\right.\) có tập nghiệm nguyên là?
2. Cho hệ bpt \(\left\{{}\begin{matrix}2x-4< 0\\mx+m-2>0\end{matrix}\right.\). Gia trị của m để hệ bpt vô nghiệm
3. Với giá trị nào của m thì hệ bpt \(\left\{{}\begin{matrix}x-2m\ge2\\x-m^2\le-1\end{matrix}\right.\) có nghiệm duy nhất
Cho bpt \(-x^2-2\left(m-1\right)x+2m-1>0\) . Tìm tất cả các giá trị m để (0;1) là tập con của tập nghiệm bpt \(\left(x_1;x_2\right)\)