Tìm tất cả các giá trị của tham số m để bất pt
a) \(\left(x+m\right)m+x>3x+4\) có tập nghiệm là \(\left(-m-2;+\infty\right)\)
b) \(m\left(x-m\right)\ge x-1\) có tập nghiệm là \((-\infty;m+1]\)
c) \(m\left(x-1\right)< 2x-3\) có nghiệm
d) \(\left(m^2+m-6\right)x\ge m+1\) có nghiệm
Tìm tất cả các giá trị của tham số m để bất pt
a) \(m^2x-1< mx+m\) có nghiệm
b) \(\left(m^2+9\right)x+3\ge m\left(1-6x\right)\) có nghiệm đúng với mọi x
c) \(4m^2\left(2x-1\right)\ge\left(4m^2+5m+9\right)x-12\) có nghiệm đúng với mọi x
Tìm tất cả các giá trị m để
a) \(m^2\left(x-2\right)-mx+x+5< 0\) đúng với mọi \(x\in\left[-2018;2\right]\)
b) \(m^2\left(x-2\right)+m+x\ge0\) có nghiệm \(x\in\left[-1;2\right]\)
Cho bất phương trình \(\left(m^2-4\right)x^2+\left(m-2\right)x+1< 0\). Tìm tất cả các giá trị tham số m lm bất pt vô nghiệm có dạng \((-\infty;4]\cup[b;+\infty)\). Tính giá trị a.b
Cho BPT : \(\sqrt{\left(2x+1\right)\left(3-2x\right)}-4x^2+4x-m-3\le0\)
Tìm tập hợp tất cả các giá trị của m \(\in\left[a;+\infty\right]\)thì BPT có nghiệm với mọi x thuộc [ -1/2 ; 3/2 ]
Cho bất phương trình: \(\left(2m-1\right)x^3+\left(3-3m\right)x^2+\left(m-4\right)x+2\ge0\)
Tìm m để tập nghiệm chứa \(\left(0;+\infty\right)\)
Tìm m
a) \(mx^3-x^2+2x-8m=0\) có ba nghiệm phân biệt lớn hơn 1
b) \(\left(m-1\right)x^2-2\left(m-2\right)x+m-3=0\) có hai nghiệm x1, x2 thỏa mãn x1 + x2 + x1x2 < 1.
c) \(\left(m-5\right)x^2+2\left(m-1\right)x+m=0\) (1) có 2 nghiệm x1,x2 thỏa x1<2<x2
1. Tìm nghiệm nguyên: \(\left\{{}\begin{matrix}y-\left|x^2-x\right|-1\ge0\\\left|y-2\right|+\left|x+1\right|-1\le0\end{matrix}\right.\)
2. Tìm m để bpt \(\left|\dfrac{x^2-mx-1}{x^2-2x+3}\right|\le1\) có tập nghiệm bằng R
3. Tìm m để bpt \(x^2+6x\le m\left(\left|x+3\right|+1\right)\) có nghiệm.
Tìm m để pt có nghiệm phân biệt trái dấu
a) \(2x^2-\left(m^2-m+1\right)x+2m^2-3m-5=0\)
b) \(\left(m^2-3m+2\right)x^2-2m^2x-5=0\)
c) \(x^2-2\left(m-1\right)+m^2-2m=0\)( nghiệm âm có giá trị tuyệt đối lớn hơn)