Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Nguyễn thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 11:32

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

Thanh Thanh
Xem chi tiết
Nguyễn Huy Tú
10 tháng 10 2021 lúc 19:04

Ta có : HB + HC = BC = 8 cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AB^2=BH.BC=2.8\Rightarrow AB=4cm\)

* Áp dụng hệ thức : \(AC^2=CH.BC=6.8\Rightarrow AC=4\sqrt{3}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{16\sqrt{3}}{8}=2\sqrt{3}cm\)

PHẠM LÊ THANH
Xem chi tiết
Huỳnh Quang Sang
14 tháng 3 2020 lúc 21:01

A A A B B B C C C H H H 5 3 8

Xét \(\Delta ABH\)vuông tại H ta có :

\(AB^2+BH^2=AH^2\)(định lí Pitago)

=> \(AH^2=AB^2-BH^2\)

=> \(AH^2=5^2-3^2\)

=> \(AH^2=25-9=16\)

=> \(AH=4\left(cm\right)\)

Ta có : \(BH+HC=BC\)

=> \(3+HC=8\)

=> \(HC=5\left(cm\right)\)

Xét \(\Delta AHC\)vuông tại H ta có :

\(AH^2+HC^2=AC^2\)

=> \(4^2+5^2=AC^2\)

=> \(16+25=AC^2\)

=> \(AC^2=41\)

=> \(AC=\sqrt{41}\)(vì AC > 0)

Khách vãng lai đã xóa
Lan Stella Magic
Xem chi tiết
Thanh Nhàn ♫
13 tháng 3 2020 lúc 16:06

Vì H ∈∈ BC nên ta có :

BC = BH + HC => 8 = 3 + HC

=> HC = 8 - 3 => HC = 5 cm

Áp dụng định lý pytago vào :

+) ΔABH ta có: AB^2 = BH^2 + AH^2 => AH^2 = AB^2 - BH^2

=> AH^2 = 562 - 3^2 => AH^2 = 25 - 9

=> AH^2 = 16 => AH = 4cm (do AH > 0cm )

+) ΔAHC có : AC^2 = AH^2 + HC^ 2 => AC ^2 = 4^2 + 5^2

=> AC^2 = 16 + 25 => AC^2 = 41

=> AC = \(\sqrt{41}cm\left(do\right)AC>0cm\)

Vậy AH = 4 cm ; HC = 5 cm ; AC = \(\sqrt{41}\)

Học tốt

Khách vãng lai đã xóa
Nguyễn Chí Tiên Sinh
13 tháng 3 2020 lúc 16:17

HÌNH VẼ NÈK

A B C H

Khách vãng lai đã xóa
Khánh Kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 3 2023 lúc 22:55

3:

a: AE/AD=9/6=3/2

AD/AC=6/12=1/2

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

=>ΔADE đồng dạng vơi ΔABC

c: IB/IC=AB/AC=AD/AE

=>IB*AE=IC*AD

Lam anh Nguyễn hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2023 lúc 12:45

4:

a: Gọi độ dài cạnh góc vuông cần tìm là x

Theo đề, ta có: x^2+x^2=a^2

=>2x^2=a^2

=>x^2=a^2/2=2a^2/4

=>\(x=\dfrac{a\sqrt{2}}{2}\)

b:

Độ dài cạnh là;

\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)

5: 

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>13^2=12^2+HB^2

=>HB=5cm

BC=5+16=21cm

ΔAHC vuông tại H

=>AH^2+HC^2=AC^2

=>AC^2=16^2+12^2=400

=>AC=20(cm)

Uyên Dii
Xem chi tiết
Nguyễn Khánh Toàn
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2022 lúc 21:47

1: \(BC=\sqrt{12^2+9^2}=15\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{144}{15}=9,6\left(cm\right)\)

CH=5,4(cm)

2: \(BC=\sqrt{2+2}=2\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=1\left(cm\right)\)

\(BH=CH=AH=1\left(cm\right)\)

ngoc anh nguyen
Xem chi tiết
Ngọc Hà
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 10 2021 lúc 14:04

Áp dụng Pytago \(BC=\sqrt{AB^2+AC^2}=\sqrt{4}=2\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot CH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,5\left(cm\right)\\CH=\dfrac{AC^2}{BC}=0,5\left(cm\right)\\AH=\sqrt{1,5\cdot0,5}=\dfrac{\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)