Trong mặt phẳng toa độ cho đường thẳng y = x (d) ; A là điểm thuộc (d) có hoành độ bằng -1 ;B là điểm thuộc (d) có tung độ bằng 1; C là điểm có hoành độ bằng 3. Xác định điểm C để tam giác ABC vuông tại A
Trong mặt phẳng toa độ Oxy cho parabol(P): y=x^2 và đường thẳng (d): y=kx+1.
1:Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt với mọi k
2: gia sử (d) cắt (P) tại E và F, gọi hoành độ của E và F lần lượt là x và y. Tính M= |x - y|
Giải bài này hộ tui với
Trong mặt phẳng toạ độ Oxy, cho parabol (P) y=x^2 và đường thẳng (d) y=x+2.
a) vẽ parabol (P) và đường thẳng (d) trên cùng mặt phẳng toạ độ Oxy.
b) Tìm toạ độ giao điểm của (P) và (d) bằng phép tính.
c) viết phương trình đường thẳng (d') có dạng y=ax+b , biết (d') song song với (d) và đi qua điểm M(2:5)
`a)`
`@ O(0;0), A(1;1), B(-1;1) in (P)`
`@ C(0;2), D(-2;0) in (d)`
`b)` Ptr hoành độ của `(P)` và `(d)` là:
`x^2=x+2`
`<=>x^2-x-2=0`
Ptr có: `a-b+c=1+1-2=0`
`=>x_1=-1;x_2=-c/a=2`
`=>y_1=1;y_2=4`
`=>(-1;1), (2;4)` là giao điểm của `(P)` và `(d)`
`c)` Vì `(d') //// (d)=>a=1` và `b ne 2`
Thay `a=1;M(2;5)` vào `(d')` có:
`5=2+b<=>b=3` (t/m)
`=>` Ptr đường thẳng `(d'): y=x+3`
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A 1 2 ; 1 ; 1 . Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 3
B. 7 2
C. 21 2
D. 3 2
Đáp án B
Phương pháp:
thay tọa độ điểm B vào phương trình ( α ) => 1 phương trình 2 ẩn a, b.
Sử dụng công thức tính khoảng cách
lập được 1 phương trình 2 ẩn chứa a, b.
+) Giải hệ phương trình tìm a,b => Toạ độ điểm B => Độ dài AB.
Dế thấy
Ta có
Lại có
Đường thẳng d đi qua M(0;0;-1), có u → = ( 1 ; 2 ; 2 )
Do đó
Vậy AB = 7 2
trong mặt phẳng tọa độ Oxy cho hai đường thẳng:(d):y=2x-3 và (d'):y=(m^2-2)x+m-1
a) vẽ đường thẳng (d) trong mặt phẳng tọa độ
b) tìm tất cả giá trị của m để đường thẳng (d) song song với (d')
a) y = 2x - 3
Cho x = 0 \(\Rightarrow\) y = -3 \(\Rightarrow\) A(0; -3)
Cho y = 0 \(\Rightarrow\) \(x=\dfrac{3}{2}\) \(\Rightarrow\) B\(\left(\dfrac{3}{2};0\right)\)
b) ĐKXĐ của (d'): \(m^2-2\ne0\)
\(\Leftrightarrow m\ne\sqrt{2}\) và \(m\ne-\sqrt{2}\)
Để (d) // (d') thì
\(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\)
\(\Leftrightarrow m=2\) (nhận)
Vậy m = 2 thì (d) // (d')
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng P : x + y + z - 3 = 0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
A. M(5;9;-11)
B. M(-3;-7;13)
C. M(5;9;11)
D. M(3;-7;13)
Chọn A
Tìm giao điểm I từ hệ phương trình đường thẳng d và mặt phẳng (P). Viết phương trình đường thẳng IM. Gọi tọa độ điểm M theo tham số của đường thẳng IM rồi xác định tham số đó từ phương trình I M = 4 14
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng (P): x+y+z-3=0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
Trong không gian Oxyz, cho mặt phẳng α : 2 x + y - 2 z - 2 = 0 , đường thẳng d : x + 1 2 = y + 2 2 = z + 3 2 và điểm A 1 2 ; 1 ; 1 . Gọi ∆ là đường thẳng nằm trong mặt phẳng α , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 2
B. 21 2
C. 7 3
D. 3 2
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y - 2 2 = z - 3 1 và mặt phẳng ( P ) : x + y - z - 2 = 0 . Trong các đường thẳng sau, đường thẳng nào nằm trong mặt phẳng (P) đồng thời vuông góc và cắt đường thẳng d?
A. ∆ 1 : x - 2 1 = y - 4 - 2 = z - 4 3
B. ∆ 2 : x - 1 3 = y - 1 - 2 = z 1
C. ∆ 3 : x - 5 3 = y - 2 - 2 = z - 5 1
D. ∆ 4 : x + 2 - 3 = y + 4 2 = z + 4 1
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+2y-z+5=0 và đường thẳng d : x + 3 2 = y + 1 1 = z - 3 1 Góc giữa đường thẳng (d) và mặt phẳng (P) là: